已知函數(shù)f(x)=sin(
π
3
-x),若要得到函數(shù)f′(x)的圖象,只需將函數(shù)y=f(x)圖象上所有的點(diǎn)( 。
A、向左平移
π
2
個(gè)單位長(zhǎng)度
B、向右平移
π
2
個(gè)單位長(zhǎng)度
C、向左平移
3
個(gè)單位長(zhǎng)度
D、向右平移
3
個(gè)單位長(zhǎng)度
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:求出函數(shù)的導(dǎo)數(shù),然后利用函數(shù)的平移變換推出結(jié)果即可.
解答: 解:函數(shù)f(x)=sin(
π
3
-x),∴函數(shù)f′(x)=-cos(
π
3
-x)=sin(x+
6
),
∴函數(shù)f(x)=sin(
π
3
-x)=sin(x+
3
),
∴將函數(shù)y=f(x)圖象上所有的點(diǎn)向左平移
π
2
個(gè)單位長(zhǎng)度得到y(tǒng)=sin(x+
π
2
+
3
)=sin(x+
6
),
故選:A.
點(diǎn)評(píng):本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,正確理解圖象平移變換規(guī)律是解題關(guān)鍵.注意變換前后函數(shù)的名稱相同,相位相同是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

仔細(xì)觀察如圖的程序框圖,則輸出的值等于( 。
A、
63
64
B、
31
32
C、
15
16
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
i
1-i
(i是虛數(shù)單位)的共軛復(fù)數(shù)
.
z
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log0.5(1-x)
的定義域是( 。
A、(-∞,1)
B、[0,1)
C、[0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-1≤x≤2},B={x|x2≤4x},則A∩B=(  )
A、[-1,4]
B、[-1,0]
C、[0,2]
D、[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2
.目標(biāo)函數(shù)z=ax+2y僅在(1,0)處取得最小值,則a的取值范圍為( 。
A、(-1,2)
B、(-2,4)
C、(-4,0]
D、(-4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m≥2,點(diǎn)P(x,y)滿足
y≥x
y≤mx
x+y≤1
點(diǎn)Q的坐標(biāo)為(0,-1),記f(m)為
OP
OQ
的最小值,則f(m)的最大值為( 。
A、-
3
2
B、-
2
3
C、0
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:|x+3|>|x-5|+7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}共有2n-1項(xiàng),其中奇數(shù)項(xiàng)之和為36,偶數(shù)項(xiàng)之和為30,求an的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案