【題目】某早餐店每天制作甲、乙兩種口味的糕點(diǎn)共n(nN*)份,每份糕點(diǎn)的成本1元,售價(jià)2元,如果當(dāng)天賣不完,剩下的糕點(diǎn)作廢品處理.該早餐店發(fā)現(xiàn)這兩種糕點(diǎn)每天都有剩余,為此整理了過往100天這兩種糕點(diǎn)的日銷量(單位:份),得到如下的統(tǒng)計(jì)數(shù)據(jù):
甲口味糕點(diǎn)日銷量 | 48 | 49 | 50 | 51 |
天數(shù) | 20 | 40 | 20 | 20 |
乙口味糕點(diǎn)日銷量 | 48 | 49 | 50 | 51 |
天數(shù) | 40 | 30 | 20 | 10 |
以這100天記錄的各銷量的頻率作為各銷量的概率,假設(shè)這兩種糕點(diǎn)的日銷量相互獨(dú)立.
(1)記該店這兩種糕點(diǎn)每日的總銷量為X份,求X的分布列
(2)早餐店為了減少浪費(fèi),提升利潤(rùn),決定調(diào)整每天制作糕點(diǎn)的份數(shù)
①若產(chǎn)生浪費(fèi)的概率不超過0.6,求n的最大值;
②以銷售這兩種糕點(diǎn)的日總利潤(rùn)的期望值為決策依據(jù),在每天所制糕點(diǎn)能全部賣完與n=98之中選其一,應(yīng)選哪個(gè)?
【答案】(1)見解析;(2),98.
【解析】試題分析:(1)由題意知 的可能取值為 分別求出相應(yīng)的概率,由此能求出分布列;(2)①求出 ,由此能求出n的最大值; ②由(1)知在每天所制蛋糕能全部賣完時(shí), ,此時(shí)銷售這兩種糕點(diǎn)的日總利潤(rùn)的期望值為 ,再求出當(dāng)時(shí),銷售這兩種糕點(diǎn)的日總利潤(rùn)的期望值,由此得到應(yīng)選 .
試題解析:(1)X所有可能的取值為96,97,98,99,100,101,102
P(X=96)=0.20.4=0.08
P(X=97)=0.20.3+0.40.4=0.22
P(X=98)= 0.20.2+0.40.3+0.20.4=0.24
P(X=99)= 0.20.1+0.40.2+0.20.3+0.20.4=0.24
P(X=100)= 0.40.1+0.20.2+0.20.3=0.14
P(X=101)= 0.20.1+0.20.2=0.06
P(X=102)= 0.20.1=0.02
X的分布列
X | 96 | 97 | 98 | 99 | 100 | 101 | 102 |
P | 0.08 | 0.22 | 0.24 | 0.24 | 0.14 | 0.06 | 0.02 |
(2)①依題意得,P(X<n)0.6,由P(X<99)=0.54,P(X<100)=0.78,n99
②記銷售兩種糕點(diǎn)的日總利潤(rùn)為Y,
當(dāng)每天所制作糕點(diǎn)能全部賣完時(shí),E(Y)96
當(dāng)n=98時(shí),E(Y)=(96-2)0.08+(97-1)0.22+980.7=97.24>96
選n=98
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,記bn= (n∈N*).
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn , 求證:對(duì)任意的n∈N* , 都有Rn<4n;
(3)記cn=b2n﹣b2n﹣1(n∈N*),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn , 求證:對(duì)任意n∈N* , 都有Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a、b、c,若cosBcosC﹣sinBsinC= .
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=f(x)的圖象經(jīng)過原點(diǎn),且1≤f(﹣1)≤2,3≤f(1)≤4,求f(﹣2)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ),(),且在點(diǎn)處的切線方程為.
(Ⅰ)求, 的值;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)有且僅有一個(gè)極值點(diǎn),求的取值范圍;
(Ⅲ)設(shè)()為兩曲線(),的交點(diǎn),且兩曲線在交點(diǎn)處的切線分別為, .若取,試判斷當(dāng)直線, 與軸圍成等腰三角形時(shí)值的個(gè)數(shù)并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=Asin(ωx+φ)(x>0,A>0)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間
(3)設(shè)不相等的實(shí)數(shù),x1 , x2∈(0,π),且f(x1)=f(x2)=﹣2,求x1+x2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖所示的程序框圖
(1)當(dāng)輸入的x為2,﹣1時(shí),分別計(jì)算輸出的y值,并寫出輸出值y關(guān)于輸入值x的函數(shù)關(guān)系式;
(2)當(dāng)輸出的結(jié)果為4時(shí),求輸入的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中,正確的有( ) ①兩個(gè)變量間的相關(guān)系數(shù)r越小,說明兩變量間的線性相關(guān)程度越低;
②命題“x∈R,使得x2+x+1<0”的否定是:“對(duì)x∈R,均有x2+x+1>0”;
③命題“p∧q為真”是命題“p∨q為真”的必要不充分條件;
④若函數(shù)f(x)=x3+3ax2+bx+a2在x=﹣1有極值0,則a=2,b=9或a=1,b=3.
A.0 個(gè)
B.1 個(gè)
C.2 個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分) 某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級(jí) | 級(jí)優(yōu) | 級(jí)良 | 級(jí)輕度污染 | 級(jí)中度污染 | 級(jí)重度污染 | 級(jí)嚴(yán)重污染 |
該社團(tuán)將該校區(qū)在年天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率.
(Ⅰ)請(qǐng)估算年(以天計(jì)算)全年空氣質(zhì)量?jī)?yōu)良的天數(shù)(未滿一天按一天計(jì)算);
(Ⅱ)該校年月、日將作為高考考場(chǎng),若這兩天中某天出現(xiàn)級(jí)重度污染,需要凈化空氣費(fèi)用元,出現(xiàn)級(jí)嚴(yán)重污染,需要凈化空氣費(fèi)用元,記這兩天凈化空氣總費(fèi)用為元,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com