已知數(shù)列{an}中,

(1)若a3>0,求實數(shù)a的取值范圍;

(2)是否存在正實數(shù)a,使anan+1>0對任意n∈N*恒成立.如果存在,請求出a的值;如果不存在,請說明理由.

答案:
解析:

  (1)

  ∴

  ∵,∴,故

  (2)不存在.

  假設(shè)存在正實數(shù),對任意,使恒成立,則>0,N*恒成立.

  ∴,∴,∴

  又,

  ∴,即

  故取,即,有,則與矛盾;

  因此,不存在正實數(shù),使,對任意*恒成立.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{
2n
an
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項和,且Sn
1
an
的一個等比中項為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習冊答案