【題目】某上市股票在30天內(nèi)每股的交易價格P(元)與時間t(天)組成有序數(shù)對,點落在如圖所示的兩條線段上.該股票在30天內(nèi)(包括30天)的日交易量M(萬股)與時間t(天)的部分數(shù)據(jù)如下表所示:

t

6

13

20

27

M(萬股)

34

27

20

13

1)根據(jù)提供的圖象,寫出該股票每股交易價格P(元)與時間t(天)所滿足的函數(shù)關系式______

2)根據(jù)表中數(shù)據(jù),寫出日交易量M(萬股)與時間t(天)的一次函數(shù)關系式:______

3)用y(萬元)表示該股票日交易額,寫出y關于t的函數(shù)關系式,并求在這30天內(nèi)第幾天日交易額最大,最大值為多少?

【答案】1)(2,()(3;在這30天內(nèi)第15天日交易額最大,最大值為125萬元

【解析】

1)利用待定系數(shù)法,分段求函數(shù)解析式即可;(2)利用待定系數(shù)法即可求出結(jié)果;(3)分段求出的最大值,再比較即可.

1)當時,設函數(shù)解析式為,

把點代入得:,解得:.

時,.

時,設函數(shù)解析式為,

把點代入得:,解得:,,

2)設,

把點和點代入得,解得,

,(.

3

時,,

時,(萬元);

時,∵

∴函數(shù)y是單調(diào)減函數(shù),

,

綜合,在這30天內(nèi)第15天日交易額最大,最大值為125萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的極值;

(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=mx3+x﹣sinx(mR).

1)當m=0時,(i)求y=f(x)在(,f))處的切線方程;

ii)證明:fx)<ex;

2)當x≥0時,函數(shù)fx)單調(diào)遞減,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C過點A(﹣1,),B),F為橢圓C的左焦點.

Ⅰ)求橢圓C的標準方程;

Ⅱ)若點B為直線l1x+y+2=0與直線l2:2xy+4=0的交點,過點B的直線1與橢圓C交于DE兩點,求DEF面積的最大值,以及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,直線l的極坐標方程為ρcosθ=4,曲線C的極坐標方程為ρ=2cosθ+2sinθ,以極點為坐標原點O,極軸為x軸的正半軸建立直角坐標系,射線l':y=kx(x≥0,0<k<1)與曲線C交于O,M兩點.

Ⅰ)寫出直線l的直角坐標方程以及曲線C的參數(shù)方程;

Ⅱ)若射線l與直線l交于點N,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:

①函數(shù)的值域是,則函數(shù)的值域為

②把函數(shù)圖像上的每一個點的橫坐標伸長到原來的4倍,然后再向右平移個單位得到的函數(shù)解析式為

③已知,則與共線的單位向量為;

④一條曲線和直線的公共點個數(shù)是m,則m的值不可能是1.

其中正確的有___________(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,若過軸上的一點可以作一直線與相交于,兩點,且滿足,的取值范圍為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,.

(Ⅰ)若處取得極值,,求函數(shù)的單調(diào)區(qū)間

(Ⅱ)若時函數(shù)有兩個不同的零點、.

的取值范圍;②求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,是矩形,平面,,四棱錐外接球的球心為,點是棱上的一個動點.給出如下命題:①直線與直線所成的角中最小的角為;②一定不垂直;③三棱錐的體積為定值;④的最小值為.其中正確命題的序號是__________.(將你認為正確的命題序號都填上)

查看答案和解析>>

同步練習冊答案