【題目】如圖,已知正三棱柱的高為3,底面邊長為,點分別為棱和的中點.
(1)求證:直線平面;
(2)求二面角的余弦值.
【答案】(1)詳見解析;(2).
【解析】
取BC中點F,連接FE,FD,可證平面AFDE,則,求解三角形證明,再由線面垂直的判定可得直線平面BCE;
以F為坐標(biāo)原點,建立如圖所示空間直角坐標(biāo)系,分別求出平面BED與平面BCD的一個法向量,由兩法向量所成角的余弦值可得二面角的余弦值.
(1)取的中點,連結(jié),如圖,
由題意知,四邊形為矩形,且.
因為為棱的中點,
所以,
因為,
所以,
因為,
所以平面,所
以.
又,
所以平面.
(2)以F為坐標(biāo)原點,建立如圖所示空間直角坐標(biāo)系,
則0,,0,,,
,,
設(shè)平面BED的一個法向量為,
由,取,得.
取平面BCD的一個法向量為,
.
且二面角為銳角,
二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)整數(shù)模2014互不同余,整數(shù)模2014也互不同余.證明:可將重新排列為,使得模4028互不同余.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個小球,分別寫有“美麗中國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產(chǎn)生0到3之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表“中國美麗”這四個字,以每三個隨機數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):
232 321 230 023 123 021 132 220 001
231 130 133 231 031 320 122 103 233
由此可以估計,恰好第三次就停止的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間幾何體ABCDE中,△BCD與△CDE均是邊長為2的等邊三角形,△ABC是腰長為3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.
(1)試在平面BCD內(nèi)作一條直線,使得直線上任意一點F與E的連線EF均與平面ABC平行,并給出證明;
(2)求三棱錐E-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知4(tanA+tanB)=+,則cosC的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,郊外有一邊長為200m的菱形池塘ABCD,塘邊AB與AD的夾角為60°,擬架設(shè)三條網(wǎng)隔BE,BF,EF,把池塘分成幾個不同區(qū)域,其中網(wǎng)隔BE與BF相互垂直,E,F(xiàn)兩點分別在塘邊AD和DC上,區(qū)域BEF為荷花種植區(qū)域.記∠ABE=,荷花種植區(qū)域的面積為Sm2.
(1)求S關(guān)于的函數(shù)關(guān)系式;
(2)求S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為函數(shù)的導(dǎo)函數(shù).
(1)討論的單調(diào)性;
(2)若對任意,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com