【題目】如圖,在四棱錐中,底面為菱形,分別是棱的中點(diǎn),且平面.
(1)求證:平面;
(2)求證:平面平面.
【答案】(1)詳見解析;(2)詳見解析.
【解析】試題分析:(Ⅰ)取SD中點(diǎn)F,連結(jié)AF,PF.證明PQ∥AF.利用直線與平面平行的判定定理證明PQ∥平面SAD.(Ⅱ)連結(jié)BD,證明SE⊥AD.推出SE⊥平面ABCD,得到SE⊥AC.證明EQ⊥AC,然后證明AC⊥平面SEQ,進(jìn)而得到平面平面
試題解析:(1)取中點(diǎn),連結(jié).
∵分別是棱的中點(diǎn),∴,且.
∵在菱形中,是的中點(diǎn),
∴,且,即且.
∴為平行四邊形,則.
∵平面,平面,∴平面.
(2)連結(jié),∵是菱形,∴,
∵分別是棱的中點(diǎn),∴,∴,
∵平面,平面,∴,
∵,平面,∴平面,
∵平面,∴平面平面.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面五邊形是軸對稱圖形(如圖1),BC為對稱軸,AD⊥CD,AD=AB=1,,將此五邊形沿BC折疊,使平面ABCD⊥平面BCEF,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
(1)證明:AF∥平面DEC;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)若是關(guān)于的方程的一個(gè)解,求的值;
(Ⅱ)當(dāng)且時(shí),解不等式;
(Ⅲ)若函數(shù)在區(qū)間上有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象過點(diǎn),對任意滿足,且最小值是.
(1)求的解析式;
(2)設(shè)函數(shù),其中,求在區(qū)間上的最小值;
(3)若在區(qū)間上,函數(shù)的圖象恒在函數(shù)的圖象上方,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形的周長是18,底邊長y是一腰長x的函數(shù),則( )
A.y=9-x(0<x≤9)
B.y=9-x(0<x<9)
C.y=18-2x(4.5≤x≤9)
D.y=18-2x(4.5<x<9)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)對于x∈[2,8],恒成立,求實(shí)數(shù)m取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么下列對立的兩個(gè)事件是( )
A. “至少1名男生”與“至少有1名是女生”
B. 恰好有1名男生”與“恰好2名女生”
C. “至少1名男生”與“全是男生”
D. “至少1名男生”與“全是女生”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,為常數(shù)
(1)用表示的最小值,求的解析式
(2)在(1)中,是否存在最小的整數(shù),使得對于任意均成立,若存在,求出的值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用系統(tǒng)抽樣法從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生從1~160編號,按編號順序平均分成20組(1~8號,9~16號,。。。,153~160號).若第15組應(yīng)抽出的號碼為116,則第一組中用抽簽方法確定的號碼是( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com