【題目】甲、乙兩人都準(zhǔn)備于下午12:00﹣13:00之間到某車站乘某路公交車外出,設(shè)在12:00﹣13:00之間有四班該路公交車開出,已知開車時(shí)間分別為12:20;12:30;12:40;13:00,分別求他們在下述情況下坐同一班車的概率.
(1)他們各自選擇乘坐每一班車是等可能的;
(2)他們各自到達(dá)車站的時(shí)刻是等可能的(有車就乘).

【答案】解:(1)他們乘車總的可能結(jié)果數(shù)為4×4=16種,
乘同一班車的可能結(jié)果數(shù)為4種,
由古典概型知甲乙乘同一班車的概率為P==
(2)利用幾何概型,設(shè)甲到達(dá)時(shí)刻為x,乙到達(dá)時(shí)刻為y,
可得0≤x≤60,0≤y≤60
試驗(yàn)總結(jié)果構(gòu)成區(qū)域?yàn)閳D①,
乘坐同一班車的事件所構(gòu)成的區(qū)域?yàn)閳D②中4個(gè)黑色小方格,
故所求概率為P=

【解析】(1)為古典概型,可得總數(shù)為4×4=16種,符合題意得為4種,代入古典概型得公式可得;
(2)為幾何概型,設(shè)甲到達(dá)時(shí)刻為x,乙到達(dá)時(shí)刻為y,可得0≤x≤60,0≤y≤60,作出圖象由幾何概型的公式可得.
【考點(diǎn)精析】本題主要考查了幾何概型的相關(guān)知識(shí)點(diǎn),需要掌握幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】滿足不等式|x﹣A|<B(B>0,A∈R)的實(shí)數(shù)x的集合叫做A的B鄰域,若a+b﹣2的a+b鄰域是一個(gè)關(guān)于原點(diǎn)對(duì)稱的區(qū)間,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)正有理數(shù)a1 的一個(gè)近似值,令a2=1+ ,求證:
(1) 介于a1與a2之間;
(2)a2比a1更接近于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A={x|x2﹣x﹣2=0},B={x|ax﹣1=0},若A∩B=B,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)y=f(x),f(0)≠0,當(dāng)x>0時(shí),f(x)>1,對(duì)任意的a,b∈R都有f(a+b)=f(a)f(b)且對(duì)任意的x∈R,恒有f(x)>0;
(1)求f(0);
(2)證明:函數(shù)y=f(x)在R上是增函數(shù);
(3)若f(x)f(2x﹣x2)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若正數(shù)x,y滿足x+3y=5xy,求:
(1)3x+4y的最小值;
(2)求xy的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式的解集是
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四圖,都是同一坐標(biāo)系中三次函數(shù)及其導(dǎo)函數(shù)的圖象,其中一定正確的序號(hào)是(
A.①②
B.①③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知圓C1的參數(shù)方程為 (φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=2 cos(θ﹣ ). (Ⅰ)將圓C1的參數(shù)方程他為普通方程,將圓C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓C1 , C2是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案