【題目】定義在R上的函數(shù)y=f(x),f(0)≠0,當(dāng)x>0時(shí),f(x)>1,對(duì)任意的a,b∈R都有f(a+b)=f(a)f(b)且對(duì)任意的x∈R,恒有f(x)>0;
(1)求f(0);
(2)證明:函數(shù)y=f(x)在R上是增函數(shù);
(3)若f(x)f(2x﹣x2)>1,求x的取值范圍.

【答案】
(1)解:令a=b=0,f(0)=[f(0)]2,又∵f(0)≠0,∴f(0)=1

(2)解:證明:設(shè)任意x1<x2,則x2﹣x1>0,∴f(x2﹣x1)>1,

f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)f(x1),

∵f(x1)>0,∴ ,

∴f(x2)>f(x1),

∴函數(shù)y=f(x)在R上是增函數(shù)


(3)解:f(x)f(2x﹣x2)=f(3x﹣x2)>f(0),

∵f(x)是R上增函數(shù),

∴3x﹣x2>0,

∴0<x<3


【解析】(1)令a=b=0,可求f(0)=1,(2)設(shè)任意x1<x2,則x2﹣x1>0,可得到f(x2)>f(x1),即函數(shù)為單調(diào)遞增,(3)利用函數(shù)的單調(diào)性及抽象函數(shù)的關(guān)系進(jìn)行求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工廠生產(chǎn)某種產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸時(shí),每年的生產(chǎn)成本y萬(wàn)元與年產(chǎn)量x噸之間的關(guān)系可可近似地表示為y= ﹣30x+4000.
(1)若每年的生產(chǎn)總成本不超過(guò)2000萬(wàn)元,求年產(chǎn)量x的取值范圍;
(2)求年產(chǎn)量為多少噸時(shí),每噸的平均成本最低,并求每噸的最低成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={1,2,3},B={x|x2﹣(a+1)x+a=0,x∈R},若A∪B=A,求實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)是2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,A1C的中點(diǎn).應(yīng)用空間向量方法求解下列問(wèn)題.

(1)求EF的長(zhǎng)
(2)證明:EF∥平面AA1D1D;
(3)證明:EF⊥平面A1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合 ,集合
(1)求A∩B;
(2)若集合C={x|2a≤x≤a+1},且(A∩B)C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人都準(zhǔn)備于下午12:00﹣13:00之間到某車站乘某路公交車外出,設(shè)在12:00﹣13:00之間有四班該路公交車開(kāi)出,已知開(kāi)車時(shí)間分別為12:20;12:30;12:40;13:00,分別求他們?cè)谙率銮闆r下坐同一班車的概率.
(1)他們各自選擇乘坐每一班車是等可能的;
(2)他們各自到達(dá)車站的時(shí)刻是等可能的(有車就乘).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某加工廠用某原料由車間加工出A產(chǎn)品,由乙車間加工出B產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時(shí)10小時(shí)可加工出7千克A產(chǎn)品,每千克A產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時(shí)6小時(shí)可加工出4千克B產(chǎn)品,每千克B產(chǎn)品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費(fèi)工時(shí)總和不得超過(guò)480小時(shí),甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為(
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a、b、c∈R,a>b,則下列不等式成立的是( 。
A.
B.a2>b2
C.a(c2+1)>b(c2+1)
D.a|c|>b|c|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)種植黃瓜,根據(jù)多年的市場(chǎng)行情得知,從春節(jié)起的300天內(nèi),黃瓜市場(chǎng)售價(jià)與上市時(shí)間的關(guān)系用圖1所示的一條折線表示,黃瓜的種植成本與上市時(shí)間的關(guān)系用圖2所示的拋物線表示.(注:市場(chǎng)售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天)
(1)寫出圖1表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式P=f(t);寫出圖2表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q=g(x);

(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)從春節(jié)開(kāi)始的第幾天上市的黃瓜純收益最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案