【題目】已知集合A={x∈R|ax2﹣3x+2=0,a∈R}.
(1)若A是空集,求a的取值范圍;
(2)若A中只有一個元素,求a的值,并把這個元素寫出來.
【答案】
(1)解:若A是空集,則方程ax2﹣3x+2=0無解,故△=9﹣8a<0,解得a> ,
故a的取值范圍為( ,+∞)
(2)解:若A中只有一個元素,則a=0 或△=9﹣8a=0,解得a=0 或 a= .
當a=0時,解ax2﹣3x+2=0 可得 x= .
當a= 時,解ax2﹣3x+2=0 可得 x= .
故A中的元素為 和
【解析】(1)若A是空集,則方程ax2﹣3x+2=0無解,故△=9﹣8a<0,由此解得a的取值范圍.(2)若A中只有一個元素,則a=0 或△=9﹣8a=0,求出a的值,再把a的值代入方程ax2﹣3x+2=0,解得x的值,即為所求
【考點精析】本題主要考查了元素與集合關系的判斷的相關知識點,需要掌握對象與集合的關系是,或者,兩者必居其一才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知曲線E上任意一點P到兩個定點 和 的距離之和為4,
(1)求動點P的方程;
(2)設過(0,﹣2)的直線l與曲線E交于C、D兩點,且 (O為坐標原點),求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】求滿足下列條件的直線方程:
(1)求經過直線l1:x+3y﹣3=0和l2:x﹣y+1=0的交點,且平行于直線2x+y﹣3=0的直線l的方程;
(2)已知直線l1:2x+y﹣6=0和點A(1,﹣1),過點A作直線l與l1相交于點B,且|AB|=5,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系.已知曲線C1: (t為參數),C2: (θ為參數).
(1)化C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點P對應的參數為t= ,Q為C2上的動點,求PQ中點M到直線C3:ρ(cosθ﹣2sinθ)=7距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足an+1= an2﹣ nan+1(n∈N*),且a1=3.
(1)計算a2 , a3 , a4的值,由此猜想數列{an}的通項公式,并給出證明;
(2)求證:當n≥2時,ann≥4nn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com