已知定點A(2,2),M在拋物線x2=4y上,M在拋物線準線上的射影是P點,則MP-MA的最大值為( 。
A.1B.
5
C.
7
D.5-2
2
∵定點A(2,2),M在拋物線x2=4y上,M在拋物線準線上的射影是P點,
∴拋物線x2=4y的焦點F(0,1),MP=MF,
∴當FA與拋物上方的交點為M時,
|MP|-|MA|=|MF|-|MA|的最大值為|AF|,
∵A(2,2),F(xiàn)(0,1),
∴|MP|-|MA|的最大值|AF|=
(2-0)2+(2-1)2
=
5

故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F(-1,0),離心率為
2
2
,過點F的直線l與橢圓C交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點F不與坐標軸垂直的直線交橢圓C于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,A、B分別是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的上、下兩頂點,P是雙曲線
y2
a2
-
x2
b2
=1
上在第一象限內(nèi)的一點,直線PA、PB分別交橢圓于C、D點,如果D恰是PB的中點.
(1)求證:無論常數(shù)a、b如何,直線CD的斜率恒為定值;
(2)求雙曲線的離心率,使CD通過橢圓的上焦點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在橢圓
x2
16
+
y2
9
=1
內(nèi),有一內(nèi)接三角形ABC,它的一邊BC與長軸重合,點A在橢圓上運動,則△ABC的重心的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知點A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點,若點C(
3
2
,
3
2
)
在橢圓上,且滿足
OC
OA
=
3
2
.(其中O為坐標原點)
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與橢圓交于兩點M,N,當
OM
+
ON
=m
OC
,m∈(0,2)
時,求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線x2-y2=1上一點Q作直線x+y=2的垂線,垂足為N,則線段QN的中點P的軌跡方程為(  )
A.2x2-2y2-2x-1=0B.x2+y2=1
C.2x2+2y2-y=0D.2x2-2y2-2x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線x-y+1=0經(jīng)過橢圓S:
x2
a2
+
y2
b2
=1(a>b>0)
的一個焦點和一個頂點.
(1)求橢圓S的方程;
(2)如圖,M,N分別是橢圓S的頂點,過坐標原點的直線交橢圓于P、A兩點,其中P在第一象限,過P作x軸的垂線,垂足為C,連接AC,并延長交橢圓于點B,設(shè)直線PA的斜率為k.
①若直線PA平分線段MN,求k的值;
②對任意k>0,求證:PA⊥PB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線C:x2=2py(p>0)與圓O:x2+y2=8相交于A、B兩點,且
OA
OB
=0
(O為坐標原點),直線l與圓O相切,切點在劣弧AB(含A、B兩點)上,且與拋物線C相交于M、N兩點,d是M、N兩點到拋物線C的焦點的距離之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)以F1、F2為左、右焦點,離心率e=
1
2
,一個短軸的端點(0,
3
);拋物線C2:y2=4mx(m>0),焦點為F2,橢圓C1與拋物線C2的一個交點為P.
(1)求橢圓C1與拋物線C2的方程;
(2)直線l經(jīng)過橢圓C1的右焦點F2與拋物線C2交于A1,A2兩點,如果弦長|A1A2|等于△PF1F2的周長,求直線l的斜率.

查看答案和解析>>

同步練習冊答案