如圖,A、B分別是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的上、下兩頂點(diǎn),P是雙曲線
y2
a2
-
x2
b2
=1
上在第一象限內(nèi)的一點(diǎn),直線PA、PB分別交橢圓于C、D點(diǎn),如果D恰是PB的中點(diǎn).
(1)求證:無(wú)論常數(shù)a、b如何,直線CD的斜率恒為定值;
(2)求雙曲線的離心率,使CD通過橢圓的上焦點(diǎn).
(1)設(shè)P點(diǎn)坐標(biāo)為(x0,y0),又A、B坐標(biāo)分別是(0,a)、(0,-a)
而D是PB的中點(diǎn),∴D點(diǎn)坐標(biāo)為(
x0
2
y0-a
2
),
把D點(diǎn)坐標(biāo)代入橢圓方程,得:
(y0-a)2
a2
+
x20
b2
=4

y20
a2
-
x20
b2
=1

由①②解得,y0=2a(y0=-a舍去)x0=
3
b
,∴P點(diǎn)坐標(biāo)為(
3
b,2a)

kPA=
y0-a
x0
=
a
3
b
,直線PA的方程是y=
a
3
b
x+a與
y2
a2
+
x2
b2
=1
聯(lián)立,解得
C點(diǎn)坐標(biāo)為(-
3
b
2
,
a
2
)
,又D點(diǎn)坐標(biāo)為(
3
2
b,
a
2
)

∴C、D兩點(diǎn)關(guān)于y軸對(duì)稱,故無(wú)論a、b如何變化,都有CDx軸,直線CD的斜率恒為常常0.
(2)當(dāng)CD過橢圓焦點(diǎn)(0,
a2-b2
)
時(shí),
a2-b2
=
a
2
,∴b=
3
4
a2
,
雙曲線中,c=
a2+b2
=
7
2
a

∴雙曲線的離心率e=
c
a
=
7
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P(4,4),圓C:(x-m)2+y2=5(m<3)與橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左右焦點(diǎn),直線PF1與圓C相切.
(1)求m的值;
(2)求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-
x2
2
與過點(diǎn)M(0,-1)的直線l相交于A、B兩點(diǎn),O為原點(diǎn).若OA和OB的斜率之和為1.
(1)求直線l的方程;
(2)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=4,一條漸近線的傾斜角為60°.
(I)求雙曲線C的方程和離心率;
(Ⅱ)若點(diǎn)P在雙曲線C的右支上,且△PF1F2的周長(zhǎng)為16,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C的漸近線為y=±
3
x
且過點(diǎn)M(1,
2
).
(1)求雙曲線C的方程;
(2)若直線y=ax+1與雙曲線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若OA與OB垂直,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)的焦點(diǎn)F作直線與拋物線交于A、B兩點(diǎn),以AB為直徑的圓與拋物線的準(zhǔn)線的位置關(guān)系是( 。
A.相交B.相切
C.相離D.與p的取值相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1
x2
2
+y2=1
和圓C2x2+y2=1,左頂點(diǎn)和下頂點(diǎn)分別為A,B,且F是橢圓C1的右焦點(diǎn).
(1)若點(diǎn)P是曲線C2上位于第二象限的一點(diǎn),且△APF的面積為
1
2
+
2
4
,求證:AP⊥OP;
(2)點(diǎn)M和N分別是橢圓C1和圓C2上位于y軸右側(cè)的動(dòng)點(diǎn),且直線BN的斜率是直線BM斜率的2倍,求證:直線MN恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定點(diǎn)A(2,2),M在拋物線x2=4y上,M在拋物線準(zhǔn)線上的射影是P點(diǎn),則MP-MA的最大值為( 。
A.1B.
5
C.
7
D.5-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l與橢圓C:
x2
3
+
y2
2
=1
交于P(x1,y1),Q(x2,y2)兩不同點(diǎn),且△OPQ的面積S△OPQ=
6
2
,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)證明x12+x22和y12+y22均為定值;
(Ⅱ)設(shè)線段PQ的中點(diǎn)為M,求|OM|•|PQ|的最大值;
(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得S△ODE=S△ODG=S△OEG=
6
2
?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案