【題目】若Sn=cos +cos +…+cos (n∈N+),則在S1 , S2 , …,S2015中,正數(shù)的個(gè)數(shù)是(
A.882
B.756
C.750
D.378

【答案】B
【解析】解:∵cos >0,cos >0,cos >0, =0, =﹣cos <0, =﹣cos <0, =﹣cos <0,cos =﹣1<0,
=﹣cos <0, =﹣cos <0, =﹣cos <0, =0,cos =cos >0,cos =cos >0,cos =cos >0,cos2π=1.
∴S1>0,…,S6>0,S7=0,S8<0,…,S15<0,S16=0.
在S1 , S2 , …,S16中,正數(shù)的個(gè)數(shù)是6個(gè).
由三角函數(shù)的周期性,可得:在S1 , S2 , …,S2000 , 正數(shù)的個(gè)數(shù)有750項(xiàng).
S2001 , …,S2015中,正數(shù)的個(gè)數(shù)也6項(xiàng).
在S1 , S2 , …,S2015中,正數(shù)的個(gè)數(shù)是756.
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)可以得到問題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合 ,B={x|2<x<9}.
(1)分別求:R(A∩B),(RB)∪A;
(2)已知C={x|2a<x<a+3},若CB,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)在給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;

(2)寫出f(x)的單調(diào)遞增區(qū)間和最值及取得最值時(shí)x的值(不需要證明);
(3)若方程f(x)﹣a=0,有三個(gè)實(shí)數(shù)根,求a的取 值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+2x+c的對(duì)稱軸為x=1,g(x)=x+ (x>0).
(1)求函數(shù)g(x)的最小值及取得最小值時(shí)x的值;
(2)試確定c的取值范圍,使g(x)﹣f(x)=0至少有一個(gè)實(shí)根;
(3)若F(x)=﹣f(x)+4x+c,存在實(shí)數(shù)t,對(duì)任意x∈[1,m],使F(x+t)≤3x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在(﹣1,1)上的偶函數(shù),當(dāng)x∈[0,1)時(shí)f(x)=lg ,
(1)求f(x)的解析式;
(2)探求f(x)的單調(diào)區(qū)間,并證明f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】值域?yàn)椋?,+∞)的函數(shù)是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“累積凈化量”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化從開始使用到凈化效率為50%時(shí)對(duì)顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量有如下等級(jí)劃分:

累積凈化量(克)

12以上

等級(jí)

為了了解一批空氣凈化器(共5000臺(tái))的質(zhì)量,隨機(jī)抽取臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這臺(tái)機(jī)器的累積凈化量都分布在區(qū)間中,按照、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:

(1)求的值及頻率分布直方圖中的值;

(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共5000臺(tái))中等級(jí)為的空氣凈化器有多少臺(tái)?

(3)從累積凈化量在的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,圓的極坐標(biāo)方程為,已知交于、兩點(diǎn),點(diǎn)位于第一象限.

(Ⅰ)求點(diǎn)和點(diǎn)的極坐標(biāo);

(Ⅱ)設(shè)圓的圓心為,點(diǎn)是直線上的動(dòng)點(diǎn),且滿足,若直線的參數(shù)方程為為參數(shù)),則的值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線C:y2=2px和⊙M:(x﹣4)2+y2=1,過拋物線C上一點(diǎn)H(x0 , y0)(y0≥1)作兩條直線與⊙M相切于A、兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)M到拋物線準(zhǔn)線的距離為
(Ⅰ)求拋物線C的方程;
(Ⅱ)當(dāng)∠AHB的角平分線垂直x軸時(shí),求直線EF的斜率;
(Ⅲ)若直線AB在y軸上的截距為t,求t的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案