一個截面為拋物線形的舊河道(如圖1),河口寬AB=4米,河深2米,現(xiàn)要將其截面改造為等腰梯形(如圖2),要求河道深度不變,而且施工時只能挖土,不準向河道填土.
(1)建立恰當?shù)闹苯亲鴺讼挡⑶蟪鰭佄锞弧AB的標準方程;
(2)試求當截面梯形的下底(較長的底邊)長為多少米時,才能使挖出的土最少?
(1)如圖:以拋物線的頂點為原點,AB中垂線為y軸建立直角坐標系
則A(-2,2),B(2,2)
設(shè)拋物線的方程為x2=2Py(P>0),
將點B(2,2)代入得P=1
所以拋物線弧AB方程為x2=2y(-2≤x≤2)
(2)設(shè)等腰梯形的腰與拋物線相切于P(t,
1
2
t2)
,(不妨t>0)
則過P(t,
1
2
t2)
的切線l的斜率為y′|x=t=t
所以切線l的方程為:y-
t2
2
=t(x-t)
,即y=tx-
t2
2

令y=0,得x=
t
2
,
令y=2,得x=
t
2
+
2
t
,
所以梯形面積S=
1
2
[2•(
t
2
+
2
t
)+2•
t
2
]•2=2(t+
2
t
)≥4
2

當僅當t=
2
t
,即t=
2
時,“=”成立
此時下底邊長為2(
2
2
+
2
2
)=3
2

答:當梯形的下底邊長等于3
2
米時,挖出的土最少.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓經(jīng)過橢圓的右焦點和上頂點
(1)求橢圓的方程;
(2)過原點的射線與橢圓在第一象限的交點為,與圓的交點為,的中點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法中,正確的有______.
①若點P(x0,y0)是拋物線y2=2px上一點,則該點到拋物線的焦點F的距離是|PF|=x0+
P
2
;
②方程x2+y2-2x+1=0表示的圖形是圓;
③設(shè)定圓O上有一動點A,圓O內(nèi)一定點M,AM的垂直平分線與半徑OA的交點為點P,則P的軌跡為一橢圓;
④某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=13;
⑤雙曲線
y2
49
-
x2
25
=-1的漸近線方程是y=±
5
7
x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線C:y2=2px(p>0),M點的坐標為(12,8),N點在拋物線C上,且滿足
ON
=
3
4
OM
,O為坐標原點.則拋物線C的方程______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,河道上有一座拋物線型拱橋,在正常水位時,拱圈最高點距水面為8m,拱圈內(nèi)水面寬16m.,為保證安全,要求通過的船頂部(設(shè)為平頂)與拱橋頂部在豎直方向上高度之差至少要有0.5m.
(1)一條船船頂部寬4m,要使這艘船安全通過,則船在水面以上部分高不能超過多少米?
(2)近日因受臺風(fēng)影響水位暴漲2.7m,為此必須加重船載,降低船身,才能通過橋洞.試問:一艘頂部寬4
2
m,在水面以上部分高為4m的船船身應(yīng)至少降低多少米才能安全通過?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米
(1)建立適當?shù)闹苯亲鴺讼,求拋物線方程.
(2)現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=x上兩點A(x1,y1)、B(x2,y2)關(guān)于直線y=x+b對稱,且y1y2=-1,則實數(shù)b的值為( 。
A.-3B.3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線C:的焦點為F,準線為,P是上一點,Q是直線PF與C得一個焦點,若,則(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是雙曲線的右支上一點,、分別是圓上的點,則的最大值等于           .

查看答案和解析>>

同步練習(xí)冊答案