已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn-an}為等比數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{bn}的前n項(xiàng)和.
考點(diǎn):數(shù)列的求和,等差數(shù)列的通項(xiàng)公式,等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)利用等差數(shù)列、等比數(shù)列的通項(xiàng)公式先求得公差和公比,即得結(jié)論;
(Ⅱ)利用分組求和法,有等差數(shù)列及等比數(shù)列的前n項(xiàng)和公式即可求得數(shù)列的和.
解答: 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意得
d=
a4-a1
3
=
12-3
3
=3.
∴an=a1+(n-1)d=3n(n=1,2,…),
設(shè)等比數(shù)列{bn-an}的公比為q,則
q3=
b4-a4
b1-a1
=
20-12
4-3
=8,∴q=2,
∴bn-an=(b1-a1)qn-1=2n-1
∴bn=3n+2n-1(n=1,2,…).
(Ⅱ)由(Ⅰ)知bn=3n+2n-1(n=1,2,…).
∵數(shù)列{an}的前n項(xiàng)和為
3
2
n(n+1),數(shù)列{2n-1}的前n項(xiàng)和為1×
1-2n
1-2
=2n-1,
∴數(shù)列{bn}的前n項(xiàng)和為
3
2
n(n+1)+2n-1.
點(diǎn)評(píng):本題主要考查學(xué)生對(duì)等差數(shù)列及等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查學(xué)生的基本的運(yùn)算能力,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知六張卡片中,三張紅色,三張黑色,它們分別標(biāo)有數(shù)字2,3,4,打亂后分給甲,乙,丙三人,每人兩張,若兩張卡片所標(biāo)數(shù)字相同稱為“一對(duì)”卡片,則三人中至少有一人拿到“一對(duì)”卡片的分法數(shù)為(  )
A、18B、24C、42D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知兩條拋物線E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),過原點(diǎn)O的兩條直線l1和l2,l1與E1,E2分別交于A1、A2兩點(diǎn),l2與E1、E2分別交于B1、B2兩點(diǎn).
(Ⅰ)證明:A1B1∥A2B2;
(Ⅱ)過O作直線l(異于l1,l2)與E1、E2分別交于C1、C2兩點(diǎn).記△A1B1C1與△A2B2C2的面積分別為S1與S2,求
S1
S2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,四面體ABCD及其三視圖(如圖2所示),過棱AB的中點(diǎn)E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點(diǎn)F,G,H.
(Ⅰ)證明:四邊形EFGH是矩形;
(Ⅱ)求直線AB與平面EFGH夾角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x2+ax+2,曲線y=f(x)在點(diǎn)(0,2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為-2.
(Ⅰ)求a;
(Ⅱ)證明:當(dāng)k<1時(shí),曲線y=f(x)與直線y=kx-2只有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx+cosx).
(Ⅰ)求f(
4
)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線C:
x2
a2
-y2=1(a>0)的右焦點(diǎn)為F,點(diǎn)A,B分別在C的兩條漸近線AF⊥x軸,AB⊥OB,BF∥OA(O為坐標(biāo)原點(diǎn)).
(1)求雙曲線C的方程;
(2)過C上一點(diǎn)P(x0,y0)(y0≠0)的直線l:
x0x
a2
-y0y=1與直線AF相交于點(diǎn)M,與直線x=
3
2
相交于點(diǎn)N.證明:當(dāng)點(diǎn)P在C上移動(dòng)時(shí),
丨MF丨
丨NF丨
恒為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1=
1
1-an
,a8=2,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
c
是非零向量,已知命題p:若
a
b
=0,
b
c
=0,則
a
c
=0;命題q:若
a
b
,
b
c
,則
a
c
,則下列命題中真命題是( 。
A、p∨q
B、p∧q
C、(¬p)∧(¬q)
D、p∨(¬q)

查看答案和解析>>

同步練習(xí)冊(cè)答案