(2012•威海二模)如圖,邊長為2的正方形內有一不規(guī)則陰影部分,隨機向正方形內投入200粒芝麻,恰有60粒落入陰影部分,則不規(guī)則圖形的面積為( 。
分析:根據(jù)幾何概型的計算公式,列出豆子落在陰影區(qū)域內的概率與陰影部分面積及正方形面積之間的關系.
解答:解:由題意,設不規(guī)則圖形的面積為S,則
S
4
=
60
200

∴S=
6
5

故選C.
點評:利用幾何概型的意義進行模擬試驗,估算不規(guī)則圖形面積的大小,關鍵是要根據(jù)幾何概型的計算公式,探究不規(guī)則圖形面積與已知的規(guī)則圖形的面積之間的關系,及它們與模擬試驗產生的概率(或頻數(shù))之間的關系,并由此列出方程,解方程即可得到答案.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)如圖,菱形ABCD的邊長為2,∠A=60°,M為DC的中點,若N為菱形內任意一點(含邊界),則
AM
AN
的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)在等比數(shù)列{an}中,a2=
1
4
,a3a6=
1
512
.設bn=log2
a
2
n
2•log2
a
2
n+1
2
,
T
 
n
為數(shù)列{bn}的前n項和.
(Ⅰ)求an和Tn
(Ⅱ)若對任意的n∈N*,不等式λTn<n-2(-1)n恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)某市職教中心組織廚師技能大賽,大賽依次設基本功(初賽)、面點制作(復賽)、熱菜烹制(決賽)三個輪次的比賽,已知某選手通過初賽、復賽、決賽的概率分別是
3
4
,
2
3
,
1
4
且各輪次通過與否相互獨立.
(I)設該選手參賽的輪次為ξ,求ξ的分布列和數(shù)學期望;
(Ⅱ)對于(I)中的ξ,設“函數(shù)f(x)=3sin
x+ξ
2
π(x∈R)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)某商場調查旅游鞋的銷售情況,隨機抽取了部分顧客的購鞋尺寸,整理得如下頻率分布直方圖,其中直方圖從左至右的前3個小矩形的面積之比為1:2:3,則購鞋尺寸在[39.5,43.5)內的顧客所占百分比為
55%
55%

查看答案和解析>>

同步練習冊答案