(2013•上海)已知數(shù)列{an}的前n項和為S n=-n2+n,數(shù)列{bn}滿足b n=2an,求
limn→∞
(b1+b2+…+bn)
分析:先由Sn求出an,進(jìn)而得到bn,由bn的表達(dá)式可判斷數(shù)列{bn}是無窮等比數(shù)列,從而可得答案.
解答:解:當(dāng)n≥2時,an=Sn-Sn-1=-n2+n+(n-1)2-(n-1)=-2n+2,
且a1=S1=0,所以an=-2n+2.
因為bn=2-2n+2=(
1
4
)n-1
,所以數(shù)列{bn}是首項為1、公比為
1
4
的無窮等比數(shù)列.
lim
n→∞
(b1+b2+…+bn)
=
1
1-
1
4
=
4
3
點評:本題考查數(shù)列的極限、等差數(shù)列的前n項和,解答本題的關(guān)鍵是根據(jù)Sn與an的關(guān)系求出an
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知圓柱Ω的母線長為l,底面半徑為r,O是上底面圓心,A,B是下底面圓周上兩個不同的點,BC是母線,如圖,若直線OA與BC所成角的大小為
π
6
,則
l
r
=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知真命題:“函數(shù)y=f(x)的圖象關(guān)于點P(a,b)成中心對稱圖形”的充要條件為“函數(shù)y=f(x+a)-b 是奇函數(shù)”.
(1)將函數(shù)g(x)=x3-3x2的圖象向左平移1個單位,再向上平移2個單位,求此時圖象對應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)g(x)圖象對稱中心的坐標(biāo);
(2)求函數(shù)h(x)=log2
2x4-x
 圖象對稱中心的坐標(biāo);
(3)已知命題:“函數(shù) y=f(x)的圖象關(guān)于某直線成軸對稱圖象”的充要條件為“存在實數(shù)a和b,使得函數(shù)y=f(x+a)-b 是偶函數(shù)”.判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設(shè)的真命題對它進(jìn)行修改,使之成為真命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知a,b,c∈R,“b2-4ac<0”是“函數(shù)f(x)=ax2+bx+c的圖象恒在x軸上方”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知向量
a
=(1,k)
,
b
=(9,k-6)
.若
a
b
,則實數(shù) k=
-
3
4
-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知拋物線C:y2=4x 的焦點為F.
(1)點A,P滿足
AP
=-2
FA
.當(dāng)點A在拋物線C上運動時,求動點P的軌跡方程;
(2)在x軸上是否存在點Q,使得點Q關(guān)于直線y=2x的對稱點在拋物線C上?如果存在,求所有滿足條件的點Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案