如圖,設(shè)直線l:y=kx+
2
(k∈R)與拋物線C:y=x2相交于P,Q兩點(diǎn),其中Q點(diǎn)在第一象限.
(1)若點(diǎn)M是線段PQ的中點(diǎn),求點(diǎn)M到x軸距離的最小值;
(2)當(dāng)k>0時(shí),過點(diǎn)Q作y軸的垂線交拋物線C于點(diǎn)R,若
PQ
PR
=0,求直線l的方程.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(1)把直線l的方程與拋物線方程聯(lián)立可得根與系數(shù)的關(guān)系,再利用中點(diǎn)坐標(biāo)公式和二次函數(shù)的性質(zhì)即可得出;
(2)利用數(shù)量積運(yùn)算和根與系數(shù)的關(guān)系即可得出.
解答: 解:(1)設(shè)P(x1,y1),Q(x2,y2),M(x0,y0).
y=kx+
2
y=x2
消去y,整理得x2-kx-
2
=0

∴x1+x2=k,x1x2=-
2

x0=
x1+x2
2
=
k
2
,y0=kx0+
2
=
k2
2
+
2
2

∴點(diǎn)M到x軸距離的最小值為
2

(2)由題意得R(-x2,y2),
PQ
PR
=(x2-x1y2-y1)•(-x2-x1,y2-y1)=(x2-x1)(-x2-x1)+(y2-y1)2

=x12-x22+(y2-y1)2=y1-y2+(y2-y1)2=(y2-y1)(y2-y1-1)=0,
∵y1≠y2,
∴y2-y1=1,從而k(x2-x1)=1,故k2(x2-x1)2=1
k2[(x2+x1)2-4x1x2]=1,k2(k2+4
2
)=1

解得k2=3-2
2
=(
2
-1)2
(負(fù)根舍去),
∵k>0,∴k=
2
-1
,
∴直線l的方程為y=(
2
-1)x+
2
點(diǎn)評(píng):本題考查了直線與拋物線相交問題轉(zhuǎn)化為方程聯(lián)立得到關(guān)于x的一元二次方程及其根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式和二次函數(shù)的性質(zhì)、數(shù)量積運(yùn)算等基礎(chǔ)知識(shí)與基本技能方法,考查了推理能力和計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且橢圓C上一點(diǎn)與兩個(gè)焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形的周長為2
2
+2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點(diǎn)F2作直線l 與橢圓C交于A,B兩點(diǎn),設(shè)
F2A
F2B
,若-2≤λ<-1,求
F1A
F1B
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(2-x)為奇函數(shù),函數(shù)f(x+3)關(guān)于直線x=1對(duì)稱,則下列式子一定成立的是( 。
A、f(x-2)=f(x)
B、f(x-2)=f(x+6)
C、f(x-2)•f(x+2)=1
D、f(-x)+f(x+1)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn),點(diǎn)P是該雙曲線和圓x2+y2=a2+b2的一個(gè)交點(diǎn),若sin∠PF1F2=2sin∠PF2F1,則該雙曲線的離心率是( 。
A、
10
4
B、
5
C、
10
D、
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直線y=kx+b(k≠0)分別交雙曲線y=
m
x
(m≠0)
于A、B兩點(diǎn),交x軸于點(diǎn)D,在x軸上有一點(diǎn)C(3,0),且AD=5,CD=4,sin∠ADC=
4
5
,B(-3,n).
(1)求該雙曲線y=
m
x
與直線AB的解析式;
(2)連接BC,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=ex-x-b.(a為常數(shù),e為自然對(duì)數(shù)的底,e≈2.71828)
(Ⅰ)當(dāng)a=1時(shí),①求f(x)的單調(diào)區(qū)間;②若對(duì)任意的X1∈R*,存在x2∈R,使f(x1)≥g(x2),求實(shí)數(shù)b的取值范圍;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,
1
2
)上無零點(diǎn),求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐P-ABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,點(diǎn)O,D分別是AB,PB的中點(diǎn),PO⊥AB,點(diǎn)Q在線段AC上,且AQ=2QC.
(Ⅰ)證明:CD∥平面OPQ
(Ⅱ)若二面角A-PB-C的余弦值的大小為
5
5
,求PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2的圖象是由y=(x-3)2+1的圖象怎樣平移得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐的體積為V,過棱錐的高的三等分點(diǎn)的兩個(gè)平行于底面的截面將棱錐分成三部分的體積比為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案