已知全集U={1,2,3,4,5,6},集合A={1,3,5},B={1,2},∁U(A∪B)等于(
A、{4}B、{6}
C、{4,6}D、∅
考點:交、并、補集的混合運算
專題:集合
分析:根據(jù)集合的基本運算進行求解即可.
解答: 解:∵集合A={1,3,5},B={1,2},
∴A∪B={1,2,3,5},
則∁U(A∪B)={4,6},
故選:C
點評:本題主要考查集合的基本運算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過A(5,1),B(1,3)兩點,圓心C在x軸上,
(1)求圓C的方程
(2)求圓C被直線lx-2y-1=0截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程cosx-1+m=0在區(qū)間[0,
3
]有解,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,∠C=2∠A,且A<B<C,b=10,a+c=2b,求a,c及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列命題是全稱命題還是特稱命題,寫出這些命題的否定,并說出這些否定的真假,不必證明.
(1)存在實數(shù)x,使得x2+2x+3≤0;
(2)有些三角形是等邊三角形;
(3)方程x2-8x-10=0的每一個根都不是奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把-
110
7
π
表示成θ+2kπ(k∈Z) 的形式,且使|θ|最小的θ的值是( 。
A、-
2
7
π
B、-
5
7
π
C、
5
7
π
D、
2
7
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
3+i
1+i
在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,公比q>1,a1+a4=9,a2a3=8.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an+1log2an+1,數(shù)列{bn}的前n項和為Sn,求使得2n+1+Sn>60n+2成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1000為上網(wǎng)購物者的年齡情況如圖所示:
(1)已知[30,40)、[40,50)、[50,60)三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求a,b的值;
(2)該電子商務(wù)平臺將年齡段在[30,50)之間的人定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取10人,并在這個10人中隨機抽取3人進行回訪,求此三人獲得代金券總和X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案