“tanα=1”是“α=kπ+
π
4
(k∈Z)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:三角函數(shù)的圖像與性質(zhì),簡易邏輯
分析:根據(jù)正切函數(shù)的性質(zhì),利用充分條件和必要條件的定義進(jìn)行判斷即可得到結(jié)論.
解答: 解:若tanα=1,則α=kπ+
π
4
k∈Z,充分性成立,
若α=kπ+
π
4
,k∈Z,則tanα=1,必要性成立,
則“tanα=1”是“α=kπ+
π
4
(k∈Z)”的充分必要條件,
故選:C.
點(diǎn)評:本題主要考查充分條件和必要條件的判斷,利用三角函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若將圓x2+y22內(nèi)的正弦曲線y=sinx與x軸圍成的區(qū)域記為M,則在網(wǎng)內(nèi)隨機(jī)放一粒豆子,落入M的概率是( 。
A、
2
π3
B、
4
x3
C、
2
π2
D、
4
π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入a1=1,k=4,則輸出的S值為( 。
A、
3
7
B、
5
11
C、
4
9
D、
8
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=log 
1
2
3,b=20.1,c=3-0.1,則a,b,c的大小關(guān)系是( 。
A、c<b<a
B、a<c<b
C、a<b<c
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖給出了一個(gè)程序框圖,其作用是輸入x的值,輸出相應(yīng)的y值.若要使輸入的x值與輸出的y值相等,則這樣的x值有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是( 。
A、3
B、
1
2
C、-
1
3
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(θ)=cosθ-sinθ,θ∈(0,π)
(1)若sinθ=
3
5
,求f(θ)的值;
(2)任取θ∈(0,π),求f(θ)>0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖分店銷售某種商品,每件商品的成本為3元,并且每件商品需向總店交a(1≤a≤3)元的管理費(fèi),預(yù)計(jì)當(dāng)每件商品的售價(jià)為x(7≤x≤9)元時(shí),一年的銷售量為(10-x)2萬件.
(1)求該連鎖分店一年的利潤L(萬元)與每件商品的售價(jià)x的函數(shù)關(guān)系式L(x);
(2)當(dāng)每件商品的售價(jià)為多少元時(shí),該連鎖分店一年的利潤L(x)最大,并求出L(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-3,0),
b
=(2,0)

(1)若向量
c
=(0,1)
,求向量
a
-
c
b
-
c
的夾角;
(2)若向量
c
滿足|
c
|=1,求向量
a
-
c
b
-
c
的夾角最小值的余弦值.

查看答案和解析>>

同步練習(xí)冊答案