袋中裝有6個白球,4個紅球,從中任取1球,抽到白球的概率為( 。
A、
2
5
B、
4
15
C、
3
5
D、非以上答案
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計
分析:任取一球總共有6+5+4=15種情況,其中是白球有6種情況.利用概率公式進(jìn)行求解.
解答: 解:袋中裝有10個球,從中任取1球有10種取法,
記“抽到的是白球”即為事件A,則P(A)=
4
10
=
2
5

故選:A
點評:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
n
m
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x-3在(-∞,a]上是單調(diào)減函數(shù),則實數(shù)a的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
a
x
+x+(a-1)lnx+15a,F(xiàn)(x)=2x3-3(2a+3)x2+12(a+1)x+12a+2.
(1)當(dāng)a=-2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)函數(shù)g(x)
F(x),x≤1
f(x),x>1
(e是自然對數(shù)的底數(shù)),是否存在a使g(x)在[a,-a]上為減函數(shù),若存在,求實數(shù)a的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若平面
a
,
b
滿足|
a
+
b
|=1,
a
+
b
平行于y軸,
b
=(2,-1),則
a
=( 。
A、(-1,1)
B、(-2,2)
C、(-1,1)或(-3,1)
D、(-2,2)或(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:在邊長為2正方形內(nèi)有一扇形(見陰影部分),點P隨意等可能落在正方形內(nèi),
則這點落在扇形外且在正方形內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|-1≤x<2},B={x|1<x≤3},求:A∩B,A∪B,∁UA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A(3,-2),B(-9,4),C(x,0)三點共線,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,a、b、c分別是角A、B、C所對的邊,且
2b-c
a
=
cosC
cosA

(Ⅰ)求角A;
(Ⅱ)若a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax+a-x(a>0且a≠1).
(1)當(dāng)x∈[1,2]時,函數(shù)f(x)的最大值為
5
2
,求此時a的值;
(2)當(dāng)x∈[-2,1]時,函數(shù)f(x)的最大值為
5
2
,求此時a的值.

查看答案和解析>>

同步練習(xí)冊答案