【題目】我國(guó)古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書(shū)中有關(guān)于三階幻方的問(wèn)題:將1,2,3,4,5,6,7,8,9分別填入3×3的方格中,使得每一行,每一列及對(duì)角線上的三個(gè)數(shù)的和都相等(如圖所示),我們規(guī)定:只要兩個(gè)幻方的對(duì)應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么不同的三階幻方的個(gè)數(shù)是( )
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
A.9B.8C.6D.4
【答案】B
【解析】
首先如題設(shè)分析,每行每列的所有書(shū)的和都是15,然后列舉所有3個(gè)數(shù)的和為15的組合情況,含5的有5個(gè),所以5放中間,含2,4,6,8的都3個(gè),所以放在四個(gè)角處,并且456,258分占兩條對(duì)角線,再用列舉法即可得到結(jié)論.
因?yàn)樗袛?shù)的和為,,所以每行每列,以及對(duì)角線的和都是15,采用列舉法:492、357、816;276、951、438;294、753、618;438、951、276;816、357、492;618、753、294;672、159、834;834、159、672.共8種排法,則不同的三階幻方的個(gè)數(shù)是8.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如橢圓C:的兩個(gè)焦點(diǎn)與其中一個(gè)頂點(diǎn)構(gòu)成一個(gè)斜邊長(zhǎng)為4的等腰直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)直線l交橢圓C于P,Q兩點(diǎn),直線OP,OQ的斜率分別為k,k'.若,求證△OPQ的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某公園有三條觀光大道、、圍成直角三角形,其中直角邊,斜邊.
(1)若甲乙都以每分鐘100的速度從點(diǎn)出發(fā),甲沿運(yùn)動(dòng),乙沿運(yùn)動(dòng),乙比甲遲2分鐘出發(fā),求乙出發(fā)后的第1分鐘末甲乙之間的距離;
(2)現(xiàn)有甲、乙、丙三位小朋友分別在點(diǎn)、、,設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請(qǐng)將甲乙之間的距離表示為的函數(shù),并求甲乙之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù),為自然對(duì)數(shù)的底數(shù))的圖象在點(diǎn)處的切線與該函數(shù)的圖象恰好有三個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍是( )
A. B.
C. 或D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:(1)若,,則;(2)若,,,則;(3)若,,則;(4)若,,則,其中正確命題的序號(hào)是( )
A.(1)(2)B.(2)(3)
C.(3)(4)D.(1)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐的頂點(diǎn)為,底面圓心為,半徑為.
(1)設(shè)圓錐的母線長(zhǎng)為,求圓錐的體積;
(2)設(shè),、是底面半徑,且,為線段的中點(diǎn),如圖.求異面直線與所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知橢圓的離心率為,點(diǎn)在橢圓上,若圓的一條切線(斜率存在)與橢圓C有兩個(gè)交點(diǎn)A,B,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求圓O的標(biāo)準(zhǔn)方程;
(3)已知橢圓C的上頂點(diǎn)為M,點(diǎn)N在圓O上,直線MN與橢圓C相交于另一點(diǎn)Q,且,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合是實(shí)數(shù)集的子集,如果正實(shí)數(shù)滿足:對(duì)任意都存在使得則稱為集合的一個(gè)“跨度”,已知三個(gè)命題:
(1)若為集合的“跨度”,則也是集合的“跨度”;
(2)集合的“跨度”的最大值是4;
(3)是集合的“跨度”.
這三個(gè)命題中正確的個(gè)數(shù)是()
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問(wèn)在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對(duì)稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com