分析 由已知結(jié)合函數(shù)零點的存在定理,可得$\left\{\begin{array}{l}f(0)•f(1)<0\\ f(1)•f(3)<0\end{array}\right.$,解得k的取值范圍.
解答 解:∵函數(shù)f(x)=kx2+x+k有兩個不同的零點,且一個零點在區(qū)間(0,1)內(nèi),另一個在區(qū)間(1,3),
∴$\left\{\begin{array}{l}f(0)•f(1)<0\\ f(1)•f(3)<0\end{array}\right.$,即$\left\{\begin{array}{l}k•(2k+1)<0\\(2k+1)•(10k+3)<0\end{array}\right.$,
解得:k∈(-$\frac{1}{2}$,$-\frac{3}{10}$)
點評 本題考查的知識點是函數(shù)的零點的存在定理,難度不大,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | -2 | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線 | B. | 線段 | C. | 圓 | D. | 半圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橢圓 | B. | 線段 | C. | 兩條射線 | D. | 雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com