交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,交通指數(shù)取值范圍為0~10,分為五個(gè)級(jí)別,0~2 暢 通;2~4 基本暢通;4~6 輕度擁堵;6~8 中度擁堵;8~10 嚴(yán)重?fù)矶拢绺叻鍟r(shí)段,從昆明市交通指揮中心隨機(jī)選取了二環(huán)以內(nèi)的50個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的直方圖如右.

(1)據(jù)此估計(jì),早高峰二環(huán)以內(nèi)的三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕适嵌嗌伲?br />(2)某人上班路上所用時(shí)間若暢通時(shí)為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘;中度擁堵為42分鐘;嚴(yán)重?fù)矶聻?0分鐘,求此人所用時(shí)間的數(shù)學(xué)期望.
考點(diǎn):頻率分布直方圖,離散型隨機(jī)變量的期望與方差
專題:圖表型,概率與統(tǒng)計(jì)
分析:(1)由頻率分布直方圖知“一個(gè)路段嚴(yán)重?fù)矶隆钡母怕蕿?.1,三個(gè)路段“至少一個(gè)路段嚴(yán)重?fù)矶隆钡膶?duì)立事件是“三個(gè)路段都不嚴(yán)重?fù)矶隆保?br />求得對(duì)立事件的概率,根據(jù)事件與其對(duì)立事件的概率和為1求三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕剩?br />(2)根據(jù)直方圖列出所有時(shí)間的分布列,代入期望公式計(jì)算.
解答: 解:(1)設(shè)事件A“一個(gè)路段嚴(yán)重?fù)矶隆保瑒tP(A)=0.1,
事件B“至少一個(gè)路段嚴(yán)重?fù)矶隆,則P(
.
B
)=(1-P(A))3=0.729,
P(B)=1-P(
.
B
)=1-0.729=0.271.
∴三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕适?.271;
(2)分布列如下表:
X 30 36 42 60
P 0.1 0.44 0.36 0.1
EX=30×0.1+36×0.44+0.36×42+60×0.1=39.96,
此人經(jīng)過該路段所用時(shí)間的數(shù)學(xué)期望是39.96分鐘.
點(diǎn)評(píng):本題考查了頻率分布直方圖及離散型隨機(jī)變量的分布列與方差,是概率統(tǒng)計(jì)的常見題型,本題利用了求對(duì)立事件的概率來求事件的概率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個(gè)命題;
①函數(shù)g(x)=1+
2
2x-1
是奇函數(shù);
②函數(shù)f(x)=log2x滿足:對(duì)于任意x1,x2∈R,且x1≠x2,都有f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)]

③若函數(shù)f(x)滿足f(x-1)=-f(x+1),f(1)=2,則f(7)=-2;
④設(shè)x1,x2是關(guān)于x的方程|logax|=k(a>0,a≠1,k>0)的兩根,則x1x2=1;
其中正確的命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知
OA
=(-1,t),
OB
=(2,2),若∠ABO=90°,則t=( 。
A、2B、4C、5D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y-1=k(x-3)被圓(x-2)2+(y-2)2=4所截得的最短弦長等于( 。
A、
3
B、2
3
C、2
2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角坐標(biāo)平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(2,0)的距離與直線x=-2的距離相等.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)M(m,0)(m>0)作直線與曲線C相交于A,B兩點(diǎn),問:是否存在一條垂直于x軸的直線與以線段AB為直徑的圓始終相切?若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y),點(diǎn)Q在曲線C:y2=2x上.
(1)若點(diǎn)Q在第一象限內(nèi),且|PQ|=2,求點(diǎn)Q的坐標(biāo);
(2)求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,PA=PD=AD且側(cè)面PAD⊥底面ABCD,若E、F分別為PC、BD的中點(diǎn).
(Ⅰ)求證:EF∥平面PAD; 
(Ⅱ)在線段PB上是否存在點(diǎn)M,使得二面角A-MC-B為直二面角,若存在,求出BM的長,若不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AB∥DC,∠ABC=90°且PA=AB=BC,DC=2AB點(diǎn)E是棱PB上的動(dòng)點(diǎn).
(Ⅰ)當(dāng)PD∥平面EAC時(shí),確定點(diǎn)E在棱PB上的位置;
(Ⅱ)在(Ⅰ)的條件下,求二面角E-AC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線(c-d)(x-b)-(a-b)(y-d)=0與曲線(x-a)(x-b)-(y-c)(y-d)=0的交點(diǎn)個(gè)數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案