【答案】
分析:(1)首先當(dāng)n=1時(shí),a
2-a
1=
>0,可知a
2>a
1,當(dāng)n≥2時(shí),a
n+1-a
n=
<0,可得a
n+1<a
n.因此當(dāng)n≥2時(shí),數(shù)列{a
n}是遞減數(shù)列,因而可知數(shù)列{a
n}中最大項(xiàng)為a
2.
(2)當(dāng)n≥2時(shí),可知a
n=a
1+(a
2-a
1)+(a
3-a
2)++(a
n-1-a
n-2)+(a
n-a
n-1),代入各項(xiàng)的值,根據(jù)式子的特征設(shè)置ka
n代入各項(xiàng)值,兩式相減即可求出數(shù)列{a
n}的通項(xiàng)公式
;再檢查當(dāng)n=1時(shí),通項(xiàng)式是否符合,若不符合,則分情況,若符合,則該數(shù)列的通項(xiàng)公式為
.
解答:解:(1)當(dāng)n=1時(shí),a
2-a
1=
>0.
∴a
2>a
1,當(dāng)n≥2時(shí),a
n+1-a
n=
<0,
∴a
n+1<a
n.
故當(dāng)n≥2時(shí),數(shù)列{a
n}是遞減數(shù)列.
綜上所述,對(duì)一切n∈N
*都有a
2≥a
n.
∴數(shù)列{a
n}中最大項(xiàng)為a
2.
(2)由
,a
n+1-a
n=
(n∈N
*),
當(dāng)n≥2時(shí),a
n=a
1+(a
2-a
1)+(a
3-a
2)++(a
n-1-a
n-2)+(a
n-a
n-1)=
,①
,②
①-②,得
,
∴
.
又n=1時(shí),a
1=
適合上式,
∴
(n∈N
*).
點(diǎn)評(píng):此題主要考根據(jù)數(shù)列的公式判斷函數(shù)的單調(diào)性,以及數(shù)列的通項(xiàng)公式的推導(dǎo)方法,是基礎(chǔ)題.