已知拋物線f(x)=2x2-x上一點(diǎn)P(3,f(3))及附近一點(diǎn)P'(3+△x,f(3+△x)),則割線PP′的斜率為kPP′=
f(3+△x)-f(3)△x
=
2△x+11
2△x+11
,當(dāng)△x趨近于0時(shí),割線趨近于點(diǎn)P處的切線,由此可得到點(diǎn)P處切線的一般方程為
11x-y-18=0
11x-y-18=0
分析:把3+△x和3代入f(x)=2x2-x,再代入公式KPP=
f(3+△x)-f(3)
△x
整理后即可;求點(diǎn)P處切線的方程,可先把
KPP=
f(3+△x)-f(3)
△x
求△x→0的極限值得到切線的斜率,求出f(3)后直接寫(xiě)出直線方程的點(diǎn)斜式,然后化為一般式.
解答:解:因?yàn)閒(x)=2x2-x,
則割線PP′的斜率為kPP′=
f(3+△x)-f(3)
△x
=
2(3+△x)2-(3+△x)-(2×32-3)
△x

=
18+12△x+2(△x)2-3-△x-18+3
△x

=
2(△x)2+11△x
△x
=2△x+11.
當(dāng)△x趨近于0時(shí),割線趨近于點(diǎn)P處的切線,由此可得到點(diǎn)P處切線的斜率為:
lim
△x→0
(2△x+11)=11

又f(3)=2×32-3=15,所以P(3,15).
所以,點(diǎn)P處切線的方程為y-15=11×(x-3),即為11x-y-18=0.
故答案分別為2△x+11,11x-y-18=0.
點(diǎn)評(píng):本題考查了函數(shù)變化率,考查了導(dǎo)數(shù)的概念與其幾何意義,函數(shù)在曲線上某點(diǎn)處的導(dǎo)數(shù)值,就是函數(shù)圖象在該點(diǎn)處的切線的斜率.考查了直線方程的點(diǎn)斜式和一般式的互化,是基礎(chǔ)的概念題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線f(x)=ax2+bx+
14
與直線y=x相切于點(diǎn)A(1,1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若對(duì)任意x∈[1,9],不等式f(x-t)≤x恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線f(x)=ax2+bx+
14
的最低點(diǎn)為(-1,0),
(1)求不等式f(x)>4的解集;
(2)若對(duì)任意x∈[1,9],不等式f(x-t)≤x恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線f(x)=2x2-x上一點(diǎn)P(3,f(3))及附近一點(diǎn)P′(3+△x,f(3+△x)),則割線PP′的斜率為kPP′=
f(3+△x)-f(3)△x
=
2△x+11
2△x+11
,當(dāng)△x趨近于0時(shí),割線趨近于點(diǎn)P處的切線,由此可得到點(diǎn)P處切線的斜率為
11
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線f(x)=ax2+bx+c(x>0,a>0)的對(duì)稱(chēng)軸為x=1,則f(2x)與f(3x)的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案