已知函數(shù)f(x)=(x+1)lnx-x+1.
(1)求曲線在(1,f(1))處的切線方程;
(2)證明:0<x<1時(shí)f(x)<0.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,證明題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求出導(dǎo)數(shù),求出切線斜率,切點(diǎn),由點(diǎn)斜式方程,得到切線方程;
(2)令g(x)=lnx-x,求導(dǎo)數(shù),求單調(diào)區(qū)間,求出最大值,得到lnx-x+1≤0.從而得證.
解答: 解:(1)函數(shù)f(x)=(x+1)lnx-x+1,
f′(x)=lnx+(x+1)•
1
x
-1=lnx+
1
x
,
f′(1)=1,f(1)=0,
∴曲線在(1,f(1))處的切線方程為:y=x-1.
(2)證明:令g(x)=lnx-x,那么g′(x)=
1
x
-1,
g′(x)>0,則0<x<1;g′(x)<0,則x>1.
可知當(dāng)0<x<1時(shí)單調(diào)增,當(dāng)x>1時(shí)單調(diào)減.
故g(x)=lnx-x 在x=1 處取最大值為gmax=-1,
故lnx-x≤-1,即lnx-x+1≤0.
故當(dāng)0<x<1 時(shí),f(x)=xlnx+lnx-x+1<0.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的綜合運(yùn)用:求切線方程和求單調(diào)區(qū)間,求極值、最值,同時(shí)考查構(gòu)造函數(shù)應(yīng)用導(dǎo)數(shù)證明問題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,點(diǎn)(1,
3
4
a)在橢圓C上.F1,F(xiàn)2分別是橢圓的左、右焦點(diǎn).
(1)求橢圓C的方程;
(2)若直線l:x+y-m=0與橢圓C恰有一個(gè)公共點(diǎn),在直線l上求一點(diǎn)P,使△PF1F2的周長最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐D-ABC的底面是正三角形,且DA⊥平面ABC,O為底面中心,M、N是BD上的兩點(diǎn),且BM=DM=3MN
(1)ON∥平面MAC; 
(2)若AM⊥BD,求BO與平面MAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,PA,PB,PC兩兩垂直,且PA=2
7
,PB=PC=2
2
,求三棱錐的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|2x-3|≤1的解集為[m,n].
(1)求m+n的值;
(2)若|x-a|<m,求證:|x|<|a|+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
n+2
3
an(n∈N*),a1=
1
3

①求證:數(shù)列{
an
n(n+1)
}為常數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
②設(shè)Tn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,若對(duì)任意的n∈N*,x∈(0,+∞),不等式Tn<x-2lnx+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若曲線y=f(x)與y=g(x)都和直線y=kx+b相切,且滿足:f(x)≤kx+b≤g(x)或g(x)≤kx+b≤f(x)恒成立,則稱直線y=kx+b為曲線y=f(x)與y=g(x)的“內(nèi)公切線”.已知f(x)=-
1
4
x2,g(x)=ex
(1)試探究曲線y=f(x)與y=g(x)是否存在“內(nèi)公切線”?若存在,請(qǐng)求出內(nèi)公切線的方程;若不存在,請(qǐng)說明理由;
(2)g′(x)是函數(shù)g(x)的導(dǎo)設(shè)函數(shù),P(x1,g(x1)),Q(x2,g(x2))是函數(shù)y=g(x)圖象上任意兩點(diǎn),x1<x2,且存在實(shí)數(shù)x3,使得g′(x3)=
g(x2)-g(x1)
x2-x1
,證明:x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z是復(fù)數(shù),若z+2i為實(shí)數(shù)(i為虛數(shù)單位),且z(1-2i)為純虛數(shù).
(1)求復(fù)數(shù)z;
(2)若復(fù)數(shù)(z+mi)2在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間三點(diǎn)A(1,2,3),B(5,4,7),C(3,5,5),則
|AB|
|CB|
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案