14.根據(jù)如圖所示的偽代碼,最后輸出的實數(shù)a的值為105.

分析 模擬執(zhí)行程序,依次寫出每次循環(huán)得到的a,i的值,當i=9時不滿足條件i≤7,退出循環(huán),輸出a的值為105.

解答 解:模擬執(zhí)行程序可得:
a=1,i=3
滿足條件i≤7,a=3,i=5
滿足條件i≤7,a=15,i=7
滿足條件i≤7,a=105,i=9
不滿足條件i≤7,退出循環(huán),輸出a的值為105.
故答案為:105.

點評 本題主要考查了循環(huán)結(jié)構(gòu)的程序,根據(jù)框圖的流程判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知兩直線l1:ax-2y+1=0,l2:x-ay-2=0.當a=0時,l1⊥l2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=x3-2x2+2,則下列區(qū)間必存在零點的是( 。
A.($-2,-\frac{3}{2}$)B.($-\frac{3}{2},-1)$C.($-1,-\frac{1}{2}$)D.($-\frac{1}{2},0$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+y≤4}\\{y≥x}\\{x≥1}\end{array}\right.$,設(shè)Z=$\frac{y}{x+1}$,則Z的取值范圍( 。
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(-∞,$\frac{1}{2}$]∪[$\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和為Sn,當n≥2時,點($\frac{1}{{S}_{n-1}}$,$\frac{1}{{S}_{n}}$)在f(x)=x+2的圖象上,且S1=$\frac{1}{2}$,且bn=2(1-n)an(n∈N*).
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設(shè)f(n)=$\frac{_{n+2}}{(n+5)_{n+1}}$,求f(n)的最大值及相應(yīng)的n值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若4x-5×2x+6≤0,則函數(shù)f(x)=2x-2-x的值域是[$\frac{3}{2}$,$\frac{8}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.定義在R上的函數(shù)f(x)滿足f(-x)=f(x),對于任意x1,x2∈[0,+∞),$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0(x2≠x1),則( 。
A.f(-1)<f(-2)<f(3)B.f(3)<f(-1)<f(-2)C.f(-2)<f(-1)<f(3)D.f(3)<f(-2)<f(-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若圓x2+y2-4mx+(2m-3)y+4=0被直線2x-2y-3=0所截得的弦最長,則實數(shù)m的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,(a+b+c)(a-b+c)=ac,則B=$\frac{2π}{3}$.

查看答案和解析>>

同步練習冊答案