已知橢圓C:的離心率為,右焦點到直線 的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線 與橢圓C交于A、B兩點,且線段AB中點恰好在直線上,求△OAB的面積S的最大值.(其中O為坐標(biāo)原點).
(I) .(II)

試題分析:(I)由題意得,,所以,所求橢圓方程為.
(II)設(shè),把直線代入橢圓方程得到
,因此,
所以中點,又在直線上,得,
, 故,,
所以,原點的距離為,
得到,當(dāng)且僅當(dāng)取到等號,檢驗成立.
點評:中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運用了橢圓的幾何性質(zhì),注意明確焦點軸和a,b,c的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達(dá)定理。本題(2)利用弦長公式,確定得到三角形面積表達(dá)式,應(yīng)用均值定理求得最大值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線=1的兩條漸近線互相垂直,那么該雙曲線的離心率是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線,過右焦點作雙曲線的其中一條漸近線的垂線,垂足為,交另一條漸近線于點,若(其中為坐標(biāo)原點),則雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線p>0)的準(zhǔn)線與圓相切,則p的值為(    )
A.10B.6 C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面上動點P()及兩個定點A(-2,0),B(2,0),直線PA、PB的斜率分別為、 且
(I)求動點P所在曲線C的方程。
(II)設(shè)直線與曲線C交于不同的兩點M、N,當(dāng)OM⊥ON時,求點O到直線的距離。(O為坐標(biāo)原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


已知橢圓C:其左、右焦點分別為F1、F2,點P是坐標(biāo)平面內(nèi)一點,且|OP|=(O為坐標(biāo)原點)。
(1)求橢圓C的方程;
(2)過點l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點:若存在,求出M的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線,)的一條漸近線被圓截得的弦長為,則雙曲線的離心率為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知中心在原點的橢圓與雙曲線有公共焦點,左、右焦點分別為,且兩條曲線在第一象限的交點為,是以為底邊的等腰三角形,若,橢圓與雙曲線的離心率分別為,,則的取值范圍是(   )
A.(1,B.(,)  C.(D.(,+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面直角坐標(biāo)系和極坐標(biāo)系的原點與極點重合,軸的正半軸與極軸重合,單位長度相同。已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,射線,與曲線交于極點以外的三點A,B,C.
(1)求證:;
(2)當(dāng)時,B,C兩點在曲線上,求的值。

查看答案和解析>>

同步練習(xí)冊答案