已知橢圓C:
的離心率為
,右焦點到直線
的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線
與橢圓C交于A、B兩點,且線段AB中點恰好在直線
上,求△OAB的面積S的最大值.(其中O為坐標原點).
(I)
.(II)
試題分析:(I)由題意得
,
,所以
,所求橢圓方程為
.
(II)設
,把直線
代入橢圓方程
得到
,因此
,
,
所以
中點
,又
在直線
上,得
,
, 故
,
,
所以
,原點
到
的距離為
,
得到
,當且僅當
取到等號,檢驗
成立.
點評:中檔題,求橢圓的標準方程,主要運用了橢圓的幾何性質,注意明確焦點軸和a,b,c的關系。曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題(2)利用弦長公式,確定得到三角形面積表達式,應用均值定理求得最大值。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
雙曲線
=1的兩條漸近線互相垂直,那么該雙曲線的離心率是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
,過右焦點
作雙曲線的其中一條漸近線的垂線
,垂足為
,交另一條漸近線于
點,若
(其中
為坐標原點),則雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
(
p>0)的準線與圓
相切,則
p的值為( )
A.10 | B.6 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知平面上動點P(
)及兩個定點A(-2,0),B(2,0),直線PA、PB的斜率分別為
、
且
(I)求動點P所在曲線C的方程。
(II)設直線
與曲線C交于不同的兩點M、N,當OM⊥ON時,求點O到直線
的距離。(O為坐標原點)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:
其左、右焦點分別為F
1、F
2,點P是坐標平面內一點,且|OP|=
(O為坐標原點)。
(1)求橢圓C的方程;
(2)過點
l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點:若存在,求出M的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若雙曲線
(
,
)的一條漸近線被圓
截得的弦長為
,則雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知中心在原點的橢圓與雙曲線有公共焦點,左、右焦點分別為
,且兩條曲線在第一象限的交點為
,
是以
為底邊的等腰三角形,若
,橢圓與雙曲線的離心率分別為
,
,則
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
平面直角坐標系
和極坐標系
的原點與極點重合,
軸的正半軸與極軸重合,單位長度相同。已知曲線
的極坐標方程為
,曲線
的參數(shù)方程為
,射線
,
,
與曲線
交于極點
以外的三點A,B,C.
(1)求證:
;
(2)當
時,B,C兩點在曲線
上,求
與
的值。
查看答案和解析>>