已知函數(shù)f(x)x2bxc(bcR),對(duì)任意的xR,恒有f′(x)≤f(x)

(1)證明:當(dāng)x≥0時(shí),f(x)≤(xc)2;

(2)若對(duì)滿足題設(shè)條件的任意bc,不等式f(c)f(b)≤M(c2b2)恒成立,求M的最小值.

 

1)見解析(2

【解析】(1)易知f′(x)2xb.由題設(shè),對(duì)任意的xR,2xbx2bxc,即x2(b2)xcb≥0恒成立,所以(b2)24(cb)≤0,從而c1.于是c≥1,

c≥2 |b|,因此2cbc(cb)0.

故當(dāng)x≥0時(shí),有(xc)2f(x)(2cb)xc(c1)≥0.即當(dāng)x≥0時(shí),f(x)≤(xc)2.

(2)(1)c≥|b|.當(dāng)c|b|時(shí),有M.

t,則-1t1,2.

而函數(shù)g(t)2 (1t1)的值域是.

因此,當(dāng)c|b|時(shí),M的取值集合為.

當(dāng)c|b|時(shí),由(1)b±2,c2.此時(shí)f(c)f(b)=-80,c2b20,從而f(c)f(b)≤(c2b2)恒成立.綜上所述,M的最小值為.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:選擇題

MABC所在平面內(nèi)一點(diǎn),且滿足()·(2 )0,則ABC(  )

A.直角三角形 B.等腰三角形 C.等邊三角形 D.等腰直角三角形

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練6練習(xí)卷(解析版) 題型:填空題

若函數(shù)f(x)sin ωx(ω>0)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則ω________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)x32x23mx[0,+∞),若f(x)5≥0恒成立,則實(shí)數(shù)m的取值范圍是(  )

A. B.

C(,2] D(2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練4練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)yf(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),不等式f(x)xf′(x)<0成立,若a30.3f(30.3),blogπ3f(logπ3),clog3f,則a,bc間的大小關(guān)系是(  )

Aa>b>c Bc>b>a

Cc>a>b Da>c>b

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練3練習(xí)卷(解析版) 題型:填空題

已知f(x)是定義域?yàn)?/span>R的偶函數(shù),當(dāng)x≥0時(shí),f(x)x24x,那么,不等式f(x2)<5的解集是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練2練習(xí)卷(解析版) 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交a(3≤a≤5)的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x(9≤x≤11)時(shí),一年的銷售量為(12x)2萬件.

(1)求分公司一年的利潤L(萬元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系式;

(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),分公司一年的利潤L最大?并求出L的最大值Q(a)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題

已知x,y為正實(shí)數(shù),則(  )

A2lg xlg y2lg x2lg y B2lg(xy)2lg x·2lg y

C2lg x·lg y2lg x2lg y D2lg(xy)2lg x·2lg y

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-2空間向量與立體幾何練習(xí)卷(解析版) 題型:選擇題

如圖所示,在空間直角坐標(biāo)系中,有一棱長為a的正方體ABC-OABCDAC的中點(diǎn)EAB的中點(diǎn)F的距離為 (  )

 

A.a   B. a Ca    D.a

 

查看答案和解析>>

同步練習(xí)冊(cè)答案