若M為△ABC所在平面內(nèi)一點(diǎn),且滿足(-)·(+-2 )=0,則△ABC為( ).
A.直角三角形 B.等腰三角形 C.等邊三角形 D.等腰直角三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:解答題
已知首項(xiàng)為的等比數(shù)列{an}不是遞減數(shù)列,其前n項(xiàng)和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=Sn-(n∈N*),求數(shù)列{Tn}的最大項(xiàng)的值與最小項(xiàng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷4練習(xí)卷(解析版) 題型:選擇題
已知正方體ABCD-A1B1C1D1,M為棱A1B1的中點(diǎn),N為棱A1D1的中點(diǎn).如圖是該正方體被M,N,A所確定的平面和N,D,C1所確定的平面截去兩個(gè)角后所得的幾何體,則這個(gè)幾何體的正視圖為( ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷3練習(xí)卷(解析版) 題型:選擇題
公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a3a11=16,則a5=( ).
A.1 B.2 C.4 D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:填空題
已知A(1,2),B(3,4),C(-2,2),D(-3,5),則向量在向量上的投影為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:解答題
經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出1 t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每1 t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了130 t該農(nóng)產(chǎn)品.以X(單位:t,100≤X≤150)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤(rùn).
(1)將T表示為X的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57 000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若需求量X∈[100,110),則取X=105,且X=105的概率等于需求量落入[100,110)的頻率),求T的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:選擇題
記△ABC各邊的中點(diǎn)分別為D,E,F,在A,B,C,D,E,F中任取4點(diǎn),若這4點(diǎn)為平行四邊形頂點(diǎn),則稱為選取成功.某人連續(xù)進(jìn)行3次這種選取,則至少成功1次的概率是( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:填空題
如圖,⊙O的割線PBA過圓心O,弦CD交PA于點(diǎn)F,且△COF∽△PDF,若PB=OA=2,則PF=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練3練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=x2+bx+c(b,c∈R),對(duì)任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時(shí),f(x)≤(x+c)2;
(2)若對(duì)滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com