【題目】高鐵、網(wǎng)購(gòu)、移動(dòng)支付和共享單車(chē)被譽(yù)為中國(guó)的“新四大發(fā)明”,彰顯出中國(guó)式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶(hù)中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動(dòng)支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計(jì) | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動(dòng)支付6次及6次以上的用戶(hù)稱(chēng)為“移動(dòng)支付達(dá)人”,按分層抽樣的方法,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取6名用戶(hù)
求抽取的6名用戶(hù)中,男女用戶(hù)各多少人;
② 從這6名用戶(hù)中抽取2人,求既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率.
(2)把每周使用移動(dòng)支付超過(guò)3次的用戶(hù)稱(chēng)為“移動(dòng)支付活躍用戶(hù)”,填寫(xiě)下表,問(wèn)能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下,認(rèn)為“移動(dòng)支付活躍用戶(hù)”與性別有關(guān)?
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | .635 |
非移動(dòng)支付活躍用戶(hù) | 移動(dòng)支付活躍用戶(hù) | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
【答案】(1)① 男2人,女4人;(2);(3)見(jiàn)解析
【解析】
(1) ①利用分層抽樣求出抽取的6名用戶(hù)中,男女用戶(hù)各多少人. ②利用對(duì)立事件的概率和古典概型求既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率. (2)先完成列聯(lián)表,再求的值,再判斷能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下,認(rèn)為“移動(dòng)支付活躍用戶(hù)”與性別有關(guān).
(1)① 男人:2人,女人:6-2=4人;
②既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率 .
(2)由表格數(shù)據(jù)可得列聯(lián)表如下:
非移動(dòng)支付活躍用戶(hù) | 移動(dòng)支付活躍用戶(hù) | 合計(jì) | |
男 | 25 | 20 | 45 |
女 | 15 | 40 | 55 |
合計(jì) | 40 | 60 | 100 |
將列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算得:
,
所以在犯錯(cuò)誤概率不超過(guò)0.01的前提下,能認(rèn)為“移動(dòng)支付活躍用戶(hù)”與性別有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足an= ,若從{an}中提取一個(gè)公比為q的等比數(shù)列{ },其中k1=1,且k1<k2<…<kn , kn∈N* , 則滿(mǎn)足條件的最小q的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的切線(xiàn),ADE是⊙O的割線(xiàn),AC=AB,連接CD,CE,分別與⊙O交于點(diǎn)F,點(diǎn)G.
(1)求證:△ADC~△ACE;
(2)求證:FG∥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上的增函數(shù),函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),若對(duì)任意的x,y∈R,等式f(y﹣3)+f( )=0恒成立,則 的取值范圍是( )
A.[2﹣ ,2+ ]
B.[1,2+ ]
C.[2﹣ ,3]
D.[1,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正三角形ABC邊長(zhǎng)為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為 ,此時(shí)四面體ABCD的外接球的表面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心在坐標(biāo)原點(diǎn)的圓O經(jīng)過(guò)圓與圓的交點(diǎn),A、B是圓O與y軸的交點(diǎn),P為直線(xiàn)y=4上的動(dòng)點(diǎn),PA、PB與圓O的另一個(gè)交點(diǎn)分別為M、N.
(1)求圓O的方程;
(2)求證:直線(xiàn)MN過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求使的的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩直線(xiàn)l1:mx+8y+n=0和l2:2x+my-1=0.試確定m,n的值,使
(1)l1與l2相交于點(diǎn)P(m,-1);則m=____,n=_______
(2)l1∥l2.則_________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com