【題目】如圖,在三棱錐中,,,,為線段的中點(diǎn),是線段上一動(dòng)點(diǎn)

(1)當(dāng)時(shí),求證:;

(2)當(dāng)的面積最小時(shí),求三棱錐的體積

【答案】(1)見(jiàn)解析;(2).

【解析】

分析:(1)先利用勾股定理得到線線垂直,利用“同一平面內(nèi)與一條直線垂直的直線平行”得到線線平行,再利用線面平行的判定定理進(jìn)行證明;(2)先利用等腰三角形的“三線合一”得到線線垂直,利用線面垂直的判定定理和性質(zhì)定理得到面面垂直和線線垂直,進(jìn)而確定為直角三角形,確定何時(shí)取得最小值,再利用三棱錐的體積公式進(jìn)行求解.

詳解:(1)直角中,,

中,由,

,又,∴.

(2)等腰直角中,由中點(diǎn)知,

又由,,,

,∴,

,

,∴,

為直角三角形,

最小時(shí),的面積最小,

過(guò)點(diǎn)的垂線時(shí),當(dāng)為垂足時(shí),最小為,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹(shù)上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測(cè)重,其質(zhì)量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)按分層抽樣的方法從質(zhì)量落在 的蜜柚中抽取5個(gè),再?gòu)倪@5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹(shù)上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購(gòu)方案:

A.所有蜜柚均以40元/千克收購(gòu);

B.低于2250克的蜜柚以60元/個(gè)收購(gòu),高于或等于2250克的以80元/個(gè)收購(gòu).

請(qǐng)你通過(guò)計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意∈D,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的平底型函數(shù).

)判斷函數(shù)是否為R上的平底型函數(shù)? 并說(shuō)明理由;

)設(shè)是()中的平底型函數(shù),k為非零常數(shù),若不等式對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;

)若函數(shù)是區(qū)間上的平底型函數(shù),求的值.

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是ABAA1的中點(diǎn).

求證:(1)E、C、D1、F四點(diǎn)共面;

(2)CE、D1F、DA三線共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,則關(guān)于的方程,給出下列五個(gè)命題①存在實(shí)數(shù),使得該方程沒(méi)有實(shí)根;

②存在實(shí)數(shù),使得該方程恰有個(gè)實(shí)根;

③存在實(shí)數(shù),使得該方程恰有個(gè)不同實(shí)根;

④存在實(shí)數(shù),使得該方程恰有個(gè)不同實(shí)根;

⑤存在實(shí)數(shù),使得該方程恰有個(gè)不同實(shí)根

其中正確的命題的個(gè)數(shù)是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷售額和利潤(rùn)額資料如下表

商店名稱

A

B

C

D

E

銷售額x(千萬(wàn)元)

3

5

6

7

9

利潤(rùn)額y(百萬(wàn)元)

2

3

3

4

5

1)畫(huà)出散點(diǎn)圖.觀察散點(diǎn)圖,說(shuō)明兩個(gè)變量有怎樣的相關(guān)性.

(2)用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷售額x的回歸直線方程.

(3)當(dāng)銷售額為4(千萬(wàn)元)時(shí),估計(jì)利潤(rùn)額的大小.

其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢(qián),只見(jiàn)他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫(xiě)道:

摸球方法:從袋中隨機(jī)摸出3個(gè)球,若摸得同一顏色的3個(gè)球,攤主送給摸球者5元錢(qián);若摸得非同一顏色的3個(gè)球,摸球者付給攤主1元錢(qián).

1)摸出的3個(gè)球?yàn)榘浊虻母怕适嵌嗌伲?

2)摸出的3個(gè)球?yàn)?/span>2個(gè)黃球1個(gè)白球的概率是多少?

3)假定一天中有100人次摸獎(jiǎng),試從概率的角度估算一下這個(gè)攤主一個(gè)月(按30天計(jì))能賺多少錢(qián)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1)求實(shí)數(shù)的值;

(2)判斷的單調(diào)性并用定義證明;

(3)已知不等式恒成立, 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)zbi(bR),是純虛數(shù),i是虛數(shù)單位.

(1)求復(fù)數(shù)z;

(2)若復(fù)數(shù)(mz)2所表示的點(diǎn)在第二象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案