(2013•寧波模擬)在△ABC中,“sinA(2sinC-sinA)=cosA(2cosC+cosA)”是“角A、B、C成等差數(shù)列”的(  )
分析:根據(jù)三角函數(shù)的同角三角函數(shù)關(guān)系,兩角和的余弦公式等,我們可以對 sinA(2sinC-sinA)=cosA(2cosC+cosA)進行恒等變形,進而得到角A、B、C成等差數(shù)列與sinA(2sinC-sinA)=cosA(2cosC+cosA)的等價關(guān)系,再由充要條件的定義即可得到答案.
解答:解:在△ABC中,sinA(2sinC-sinA)=cosA(2cosC+cosA)
?2sinA•sinC-sin2A=2cosA•cosC+cos2A
?2sinA•sinC-2cosA•cosC=cos2A+sin2A=1
?-2cos(A+C)=1
?cos(A+C)=-
1
2

?A+C=
3
=2B
?角A、B、C成等差數(shù)列,
故sinA(2sinC-sinA)=cosA(2cosC+cosA)是角A、B、C成等差數(shù)列的充要條件.
故選B.
點評:利用三角函數(shù)的同角三角函數(shù)關(guān)系,兩角和的余弦公式等,對 sinA(2sinC-sinA)=cosA(2cosC+cosA)進行恒等變形,探究其與A、B、C成等差數(shù)列的等價關(guān)系是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,x軸被曲線C2:y=x2-b截得的線段長等于C1的短軸長.C2與y軸的交點為M,過坐標(biāo)原點O的直線l與C2相交于點A、B,直線MA,MB分別與C1相交于點D、E.
(1)求C1、C2的方程;
(2)求證:MA⊥MB.
(3)記△MAB,△MDE的面積分別為S1、S2,若
S1
S2
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)若方程x2-5x+m=0與x2-10x+n=0的四個根適當(dāng)排列后,恰好組成一個首項1的等比數(shù)列,則m:n值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)已知F1、F2是橢圓的兩個焦點,滿足
MF1
MF2
的點M總在橢圓內(nèi)部,則橢圓離心率的取值范圍是
(O,
2
2
(O,
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)已知f(x)=ax-lnx,x∈(0,e],其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間和極值;
(2)若f(x)≥3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項和為sn
(Ⅰ)求數(shù)列{an}的通項公式.
(Ⅱ)若數(shù)列{bn}滿足 bn=
1
sn+1-1
,其前n項和為Tn,求證Tn
3
4

查看答案和解析>>

同步練習(xí)冊答案