(2013•寧波模擬)等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項(xiàng)和為sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)若數(shù)列{bn}滿足 bn=
1
sn+1-1
,其前n項(xiàng)和為T(mén)n,求證Tn
3
4
分析:(Ⅰ)由2a1+3a2=11,2a3=a2+a6-4,利用等差數(shù)列的通項(xiàng)公式求出a1=1,d=2,由此能求出an
(Ⅱ)由a1=1,d=2,知Sn=n2.從而得到bn=
1
Sn+1-1
=
1
2
1
n
-
1
n+2
),由此利用裂項(xiàng)求和法證明Tn
3
4
解答:解:(Ⅰ)等差數(shù)列{an}中,
∵2a1+3a2=11,2a3=a2+a6-4,
2a1+3a1+3d=11
2a1+2d=a1+d+a1+5d-4
,
解得a1=1,d=2,
∴an=1+2(n-1)=2n-1.
(Ⅱ)∵a1=1,d=2,
∴Sn=n+
n(n-1)
2
×2=n2
∴bn=
1
Sn+1-1
=
1
(n+1)2-1
=
1
n2+2n
=
1
n(n+2)
=
1
2
1
n
-
1
n+2
),
∴Tn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)
3
4
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查不等式的證明,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧波模擬)如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,x軸被曲線C2:y=x2-b截得的線段長(zhǎng)等于C1的短軸長(zhǎng).C2與y軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線l與C2相交于點(diǎn)A、B,直線MA,MB分別與C1相交于點(diǎn)D、E.
(1)求C1、C2的方程;
(2)求證:MA⊥MB.
(3)記△MAB,△MDE的面積分別為S1、S2,若
S1
S2
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧波模擬)若方程x2-5x+m=0與x2-10x+n=0的四個(gè)根適當(dāng)排列后,恰好組成一個(gè)首項(xiàng)1的等比數(shù)列,則m:n值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧波模擬)已知F1、F2是橢圓的兩個(gè)焦點(diǎn),滿足
MF1
MF2
的點(diǎn)M總在橢圓內(nèi)部,則橢圓離心率的取值范圍是
(O,
2
2
(O,
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧波模擬)已知f(x)=ax-lnx,x∈(0,e],其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間和極值;
(2)若f(x)≥3恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案