【題目】某個產(chǎn)品有若千零部件構(gòu)成,加工時需要經(jīng)過6道工序,分別記為.其中,有些工序因為是制造不同的零部件,所以可以在幾臺機器上同時加工;有些工序因為是對同一個零部件進行處理,所以存在加工順序關(guān)系.若加工工序必須要在工序完成后才能開工,則稱為的緊前工序.現(xiàn)將各工序的加工次序及所需時間(單位:小時)列表如下:
工序 | ||||||
加工時間 | 3 | 4 | 2 | 2 | 2 | 1 |
緊前工序 | 無 | 無 |
現(xiàn)有兩臺性能相同的生產(chǎn)機器同時加工該產(chǎn)品,則完成該產(chǎn)品的最短加工時間是__________小時.(假定每道工序只能安排在一臺機器上,且不能間斷).
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)的導函數(shù)的圖象,給出下列命題:
①-2是函數(shù)的極值點;
②是函數(shù)的極值點;
③在處取得極大值;
④函數(shù)在區(qū)間上單調(diào)遞增.則正確命題的序號是
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0 .
(1)求p0的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務(wù),每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應(yīng)配備A型車、B型車各多少輛?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),其中.證明:的圖象在圖象的下方.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)S,T是R的兩個非空子集,如果存在一個從S到T的函數(shù)y=f(x)滿足:(i)T={f(x)|x∈S};(ii)對任意x1 , x2∈S,當x1<x2時,恒有f(x1)<f(x2),那么稱這兩個集合“保序同構(gòu)”,以下集合對不是“保序同構(gòu)”的是( )
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,丄平面,,,,,.
(1)證明丄;
(2)求二面角的正弦值;
(3)設(shè)為棱上的點,滿足異面直線與所成的角為,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況.在30名男性駕駛員中,平均車速超過100額有20人,不超過100 的有10人;在20名女性駕駛員中,平均車速超過100的有5人,不超過100的有15人.
(1)完成下面的列聯(lián)表:
平均車速超過100 | 平均車速不超過100 | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(2)判斷是否有99.5%的把握認為,平均車速超過100與性別有關(guān).
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com