【題目】在平面直角坐標(biāo)系xOy中,對(duì)于⊙O:x2+y2=1來(lái)說(shuō),P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若P與O重合,SP=r;若P不與O重合,射線OP與⊙O的交點(diǎn)為A,SP=AP的長(zhǎng)度(如圖).
(1)直線2x+2y+1=0在圓內(nèi)部分的點(diǎn)到⊙O的最長(zhǎng)距離為_____;
(2)若線段MN上存在點(diǎn)T,使得:
①點(diǎn)T在⊙O內(nèi);
②點(diǎn)P∈線段MN,都有ST≥SP成立.則線段MN的最大長(zhǎng)度為_____.
【答案】1 4
【解析】
(1)作出對(duì)應(yīng)的圖象,由圖象可知當(dāng)直線與2x+2y+1=0垂直時(shí)對(duì)應(yīng)的交點(diǎn)P,此時(shí)P到⊙O的距離最長(zhǎng),即得解;
(2)分析可得SP≤1,因此當(dāng)線段MN過(guò)原點(diǎn)時(shí),當(dāng)線段MN過(guò)原點(diǎn)時(shí),MN的最大長(zhǎng)度為4,即得解.
作出對(duì)應(yīng)的圖象如圖:
由圖象可知當(dāng)直線與2x+2y+1=0垂直時(shí)對(duì)應(yīng)的交點(diǎn)P,取得最小值,此時(shí)P到⊙O的距離最長(zhǎng),
此時(shí)OP,則AP=1﹣OP=1.
(2)∵點(diǎn)T在⊙O內(nèi),∴ST≤1,
∵ST≥SP成立,∴SP≤1,
點(diǎn)P∈線段MN,若P在圓內(nèi),都滿足SP≤1;
若P在圓外,P必須在以原點(diǎn)為圓心,2為半徑的圓的內(nèi)部(含邊界)
∴當(dāng)線段MN過(guò)原點(diǎn)時(shí),MN的最大長(zhǎng)度為1+2+1=4,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角中,,,D,E分別是AB,BC邊的中點(diǎn),沿DE將折起至,且.
(1)求四棱錐的體積;
(2)求證:平面平面ACF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在區(qū)間上的最大值為9,最小值為1,記;
(1)求實(shí)數(shù)的值;
(2)若不等式成立,求實(shí)數(shù)的取值范圍;
(3)定義在上的函數(shù),設(shè),其中將區(qū)間任意劃分成個(gè)小區(qū)間,如果存在一個(gè)常數(shù),使得和式恒成立,則稱函數(shù)為在上的有界變差函數(shù),試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)武漢于2019年10月18日至2019年10月27日成功舉辦了第七屆世界軍人運(yùn)動(dòng)會(huì).來(lái)自109個(gè)國(guó)家的9300余名運(yùn)動(dòng)員同臺(tái)競(jìng)技.經(jīng)過(guò)激烈的角逐,獎(jiǎng)牌榜的前3名如下:
國(guó)家 | 金牌 | 銀牌 | 銅牌 | 獎(jiǎng)牌總數(shù) |
中國(guó) | 133 | 64 | 42 | 239 |
俄羅斯 | 51 | 53 | 57 | 161 |
巴西 | 21 | 31 | 36 | 88 |
某數(shù)學(xué)愛(ài)好者采用分層抽樣的方式,從中國(guó)和巴西獲得金牌選手中抽取了22名獲獎(jiǎng)代表.從這22名中隨機(jī)抽取3人, 則這3人中中國(guó)選手恰好1人的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=xex﹣ax2﹣2ax.
(Ⅰ)若y=f(x)的圖象在x=﹣1處的切線經(jīng)過(guò)坐標(biāo)原點(diǎn),求a的值;
(Ⅱ)若f(x)存在極大值,且極大值小于0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,其中.
(1)當(dāng)時(shí),求函數(shù)單調(diào)遞增區(qū)間;
(2)求函數(shù)的圖象在點(diǎn)處的切線方程;
(3)是否存在實(shí)數(shù)的值,使得在上有最大值或最小值,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】世界互聯(lián)網(wǎng)大會(huì)是由中國(guó)倡導(dǎo)并每年在浙江省嘉興市桐鄉(xiāng)烏鎮(zhèn)舉辦的世界性互聯(lián)網(wǎng)盛會(huì),大會(huì)旨在搭建中國(guó)與世界互聯(lián)互通的國(guó)際平臺(tái)和國(guó)際互聯(lián)網(wǎng)共享共治的中國(guó)平臺(tái),讓各國(guó)在爭(zhēng)議中求共識(shí)在共識(shí)中謀合作在合作中創(chuàng)共贏.2019年10月20日至22日,第六屆世界互聯(lián)網(wǎng)大會(huì)如期舉行,為了大會(huì)順利召開(kāi),組委會(huì)特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)這次大會(huì)志愿者主要通過(guò)現(xiàn)場(chǎng)報(bào)名和登錄大會(huì)官網(wǎng)報(bào)名,即現(xiàn)場(chǎng)和網(wǎng)絡(luò)兩種方式報(bào)名調(diào)查.這100位志愿者的報(bào)名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過(guò)計(jì)算說(shuō)明能
否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為“選擇哪種報(bào)名方式與性別有關(guān)系”?
男性 | 女性 | 總計(jì) | |
現(xiàn)場(chǎng)報(bào)名 | 50 | ||
網(wǎng)絡(luò)報(bào)名 | 31 | ||
總計(jì) | 50 |
參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com