【題目】如圖①是反映某條公交線路收支差額(即營(yíng)運(yùn)所得票價(jià)收入與付出成本的差)與乘客量之間關(guān)系的圖像.由于目前該條公交線路虧損,公司有關(guān)人員提出了兩種調(diào)整的建議,如圖②③所示:
給出下列說(shuō)法:(1)圖②的建議:提高成本,并提高票價(jià);(2)圖②的建議:降低成本,并保持票價(jià)不變;(3)圖③的建議:提高票價(jià),并保持成本不變;(4)圖③的建議:提高票價(jià),并降低成本.其中所有說(shuō)法正確的序號(hào)是______.
【答案】(2)(3)
【解析】
根據(jù)題意知圖像反應(yīng)了收支差額與乘客量的變化情況,即直線的斜率說(shuō)明票價(jià)問(wèn)題;當(dāng)的點(diǎn)說(shuō)明公司的成本情況,再結(jié)合圖像進(jìn)行說(shuō)明。
根據(jù)題意和圖②知,兩直線平行即票價(jià)不變,直線向上平移說(shuō)明當(dāng)乘客量為0時(shí),收入是0但是支出變少了,即說(shuō)明了此建議是降低成本而保持票價(jià)不變,故(2)正確;
由圖③看出,當(dāng)乘客量為0時(shí),支出不變,但是直線的傾斜角變大,即相同的乘客量時(shí)收入變大,即票價(jià)提高了,即說(shuō)明了此建議是提高票價(jià)而保持成本不變,故(3)正確.
故答案為(2)(3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱中,,,,點(diǎn)是的中點(diǎn).
(1)求異面直線,所成角的余弦值;
(2)求直線與平面所成角的正弦值;
(3)求異面直線與的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)名居民參加年國(guó)慶活動(dòng),他們的年齡在歲至歲之間,將年齡按、、、、分組,得到的頻率分布直方圖如圖所示.
(1)求的值,并求該社區(qū)參加年國(guó)慶活動(dòng)的居民的平均年齡(每個(gè)分組取中間值作代表);
(2)現(xiàn)從年齡在、的人員中按分層抽樣的方法抽取人,再?gòu)倪@人中隨機(jī)抽取人進(jìn)行座談,用表示參與座談的居民的年齡在的人數(shù),求的分布列和數(shù)學(xué)期望;
(3)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地歲至歲之間的市民中抽取名進(jìn)行調(diào)查,其中有名市民的年齡在的概率為,當(dāng)最大時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù),).
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)若對(duì)于任意,存在,使得,求的取值范圍;
(3)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】西北某省會(huì)城市計(jì)劃新修一座城市運(yùn)動(dòng)公園,設(shè)計(jì)平面如圖所示:其為五邊形,其中三角形區(qū)域為球類(lèi)活動(dòng)場(chǎng)所;四邊形為文藝活動(dòng)場(chǎng)所,,為運(yùn)動(dòng)小道(不考慮寬度),,千米.
(1)求小道的長(zhǎng)度;
(2)求球類(lèi)活動(dòng)場(chǎng)所的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一張長(zhǎng)為12,寬為8的鐵皮圍成圓柱形的側(cè)面,則這個(gè)圓柱的體積為_____;半徑為R的半圓形鐵皮卷成一個(gè)圓錐筒,那么這個(gè)圓錐筒的高是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中, , 平面,側(cè)面是正方形,點(diǎn)為棱的中點(diǎn),點(diǎn)、分別在棱、上,且, .
(1)證明:平面平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com