【題目】選修:不等式選講
已知函數(shù)f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.
【答案】(1){x|-};(2)m≤﹣或m≥1.
【解析】試題分析:
(Ⅰ)零點分段可得不等式的解集為{x|-};
(Ⅱ)由題意得到關(guān)于實數(shù)m的不等式,求解不等式可得實數(shù)m的取值范圍是m≤﹣或m≥1.
試題解析:
(Ⅰ)不等式f(x)<8,即|2x+3|+|2x﹣1|<8,
可化為①或②或③,…
解①得﹣<x<﹣,解②得﹣≤x≤,解③得<x<,
綜合得原不等式的解集為{x|-}.
(Ⅱ)因為∵f(x)=|2x+3|+|2x﹣1|≥|(2x+3)﹣(2x﹣1)|=4,
當(dāng)且僅當(dāng)﹣≤x≤時,等號成立,即f(x)min=4,…
又不等式f(x)≤|3m+1|有解,則|3m+1|≥4,解得:m≤﹣或m≥1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng)時,函數(shù)的圖象與軸交于兩點,且,又是的導(dǎo)函數(shù).若正常數(shù)滿足條件.試比較與0的關(guān)系,并給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,離心率為.設(shè)過點的直線與橢圓相交于不同兩點, 周長為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點,證明:當(dāng)直線變化時,總有TA與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=+x在x=1處的切線方程為2x﹣y+b=0.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若函數(shù)g(x)=f(x)+x2﹣kx,且g(x)是其定義域上的增函數(shù),求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求實數(shù)m的值;
(2)若p是q的充分條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A是由且備下列性質(zhì)的函數(shù)組成的:
①函數(shù)的定義域是;②函數(shù)的值域是;
③函數(shù)在上是增函數(shù),試分別探究下列兩小題:
(1)判斷函數(shù)數(shù)及是否屬于集合A?并簡要說明理由;
(2)對于(1)中你認(rèn)為屬于集合A的函數(shù),不等式
是否對于任意的恒成立?若成立,請給出證明;若不成立,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過點的直線交拋物線于兩點,坐標(biāo)原點為,且12.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)以為直徑的圓的面積為時,求的面積的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩圓C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.
(1)求證:圓C1和圓C2相交;
(2)求圓C1和圓C2的公共弦所在直線的方程和公共弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-1,g(x)=
(1)求f[g(2)]和g[f(2)]的值;
(2)求f[g(x)]和g[f(x)]的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com