如圖所示,四棱錐PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F為PC的中點,AF⊥PB.
(1)求PA的長;
(2)求二面角B-AF-D的正弦值.
(1)2(2)
【解析】(1)如圖,連結(jié)BD交AC于O,因為BC=CD,即△BCD為等腰三角形,又AC平分∠BCD,
故AC⊥BD.以O為坐標原點,、、的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標系Oxyz,則OC=CDcos=1,而AC=4,得AO=AC-OC=3.又OD=CDsin=,故A(0,-3,0),B(,0,0),C(0,1,0),D(-,0,0).
因為PA⊥底面ABCD,可設(shè)P(0,-3,z),由F為PC邊中點,得F,又=,=(,3,-z),因AF⊥PB,故·=0,即6-=0,z=2(舍去-2),所以||=2.
(2)由(1)知=(-,3,0),=(,3,0),=(0,2,).設(shè)平面FAD的法向量為n1=(x1,y1,z1),平面FAB的法向量為n2=(x2,y2,z2).
由n1·=0,n1·=0,得因此可取n1=(3,,-2).
由n2·=0,n2·=0,得故可取n2=(3,-,2).
從而向量n1,n2的夾角的余弦值為cos〈n1,n2〉==.
故二面角B-AF-D的正弦值為.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第六章第4課時練習卷(解析版) 題型:解答題
某森林出現(xiàn)火災,火勢正以100m2/分鐘的速度順風蔓延,消防站接到報警立即派消防隊員前去,在火災發(fā)生后5分鐘到達救火現(xiàn)場,已知消防隊員在現(xiàn)場平均每人滅火50m2/分鐘,所消耗的滅火材料,勞務(wù)津貼等費用為人均125元/分鐘,另附加每次救火所耗損的車輛、器械和裝備等費用人均100元,而燒毀森林的損失費60元/m2,應(yīng)該派多少消防隊員前去救火才能使總損失最少?
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第六章第2課時練習卷(解析版) 題型:填空題
設(shè)變量x、y滿足約束條件:則z=x-3y的最小值為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第六章第1課時練習卷(解析版) 題型:解答題
已知不等式(2+x)(3-x)≥0的解集為A,函數(shù)f(x)=(k<0)的定義域為B.
(1)求集合A;
(2)若集合B中僅有一個元素,試求實數(shù)k的值;
(3)若B?A,試求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第八章第6課時練習卷(解析版) 題型:解答題
如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點E、F分別為棱AC、AD的中點.
(1)求證:DC⊥平面ABC;
(2)求BF與平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第八章第6課時練習卷(解析版) 題型:解答題
如圖,圓錐的高PO=4,底面半徑OB=2,D為PO的中點,E為母線PB的中點,F為底面圓周上一點,滿足EF⊥DE.
(1)求異面直線EF與BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第八章第6課時練習卷(解析版) 題型:填空題
已知l∥α,且l的方向向量為(2,m,1),平面α的法向量為,則m=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第八章第5課時練習卷(解析版) 題型:解答題
如圖,在球面上有四個點P、A、B、C,如果PA、PB、PC兩兩互相垂直,且PA=PB=PC=a,求這個球的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第八章第3課時練習卷(解析版) 題型:解答題
如圖,在四棱錐PABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=AD=2,CD=3,直線PA與底面ABCD所成角為60°,點M、N分別是PA、PB的中點.求證:
(1)MN∥平面PCD;
(2)四邊形MNCD是直角梯形;
(3)DN⊥平面PCB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com