【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級,0~50為優(yōu);51~100為良101﹣150為輕度污染;151﹣200為中度污染;201~300為重度污染;>300為嚴重污染. 一環(huán)保人士記錄去年某地某月10天的AQI的莖葉圖如圖.
(Ⅰ)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良(AQI≤100)的天數(shù);(按這個月總共30天)
(Ⅱ)將頻率視為概率,從本月中隨機抽取3天,記空氣質(zhì)量優(yōu)良的天數(shù)為ξ,求ξ的概率分布列和數(shù)學期望.

【答案】解:(Ⅰ)從莖葉圖中可以發(fā)現(xiàn)這樣本中空氣質(zhì)量優(yōu)的天數(shù)為2, 空氣質(zhì)量良的天數(shù)為4,
∴該樣本中空氣質(zhì)量優(yōu)良的頻率為 ,
從而估計該月空氣質(zhì)量優(yōu)良的天數(shù)為30× =18.
(Ⅱ)由(1)估計某天空氣質(zhì)量優(yōu)良的概率為 ,ξ的所有可能取值為0,1,2,3,
且ξ~B(3, ),
P(ξ=0)=( 3=
P(ξ=1)= = ,
P(ξ=2)= = ,
P(ξ=3)=( 3= ,
∴ξ的分布列為:

ξ

0

1

2

3

P

∴Eξ=3× =1.8.
【解析】(1)從莖葉圖中可以發(fā)現(xiàn)這樣本中空氣質(zhì)量優(yōu)的天數(shù)為2,空氣質(zhì)量良的天數(shù)為4,由此能求出該樣本中空氣質(zhì)量優(yōu)良的頻率,從而能估計該月空氣質(zhì)量優(yōu)良的天數(shù).(2)估計某天空氣質(zhì)量優(yōu)良的概率為 ,ξ的所有可能取值為0,1,2,3,且ξ~B(3, ),由此能求出ξ的概率分布列和數(shù)學期望.
【考點精析】利用莖葉圖和離散型隨機變量及其分布列對題目進行判斷即可得到答案,需要熟知莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少;在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將參加數(shù)學競賽決賽的500名同學編號為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽的號碼為003,這500名學生分別在三個考點考試,從001到200在第一考點,從201到355在第二考點,從356到500在第三考點,則第二考點被抽中的人數(shù)為(
A.14
B.15
C.16
D.17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.若直線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.

(I)求直線的普通方程與曲線的直角坐標方程;

(II)設直線與曲線相交于兩點,若點的直角坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有( 。

A. 4個B. 3個C. 2個D. 1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數(shù)列{bn} 的前n項和為Tn , 若Tn≥tn2對n∈N*恒成立,則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角AB,C的對邊分別為a,b,c,且滿足(2a-bcosC-ccosB=0

(Ⅰ)求角C的值;

(Ⅱ)若三邊a,b,c滿足a+b=13c=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】前不久商丘市因環(huán)境污染嚴重被環(huán)保部約談后,商丘市近期加大環(huán)境治理力度,如表提供了商丘某企業(yè)節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對應數(shù)據(jù).

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程y=bx+a;

2)已知該企業(yè)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低了多少噸標準煤?

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)參考公式:=,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用系統(tǒng)抽樣法從200名職工中抽取容量為20的樣本,將200名職工從1至200編號,按編號順序平均分成20組(1~10號,11~20號,…,191…200號),若第15組中抽出的號碼為147,則第一組中按此抽簽方法確定的號碼是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=axex , 其中常數(shù)a≠0,e為自然對數(shù)的底數(shù). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當a=1時,求函數(shù)f(x)的極值;
(Ⅲ)若直線y=e(x﹣ )是曲線y=f(x)的切線,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案