已知函數(shù)
(Ⅰ)若是增函數(shù),求b的取值范圍;
(Ⅱ)若時取得極值,且時,恒成立,求c的取值范圍.
(Ⅰ);(Ⅱ).

試題分析:(Ⅰ)由于增函數(shù)的導(dǎo)數(shù)應(yīng)大于等于零,故先對函數(shù)求導(dǎo)并令其大于零,可得的取值范圍,注意在求導(dǎo)時需細(xì)心;(Ⅱ)由函數(shù)在處取得極值可知,在處函數(shù)導(dǎo)數(shù)為零,可求得的值,要使時,恒成立,需要求出中的最大值,只有最大值小于,則恒成立,故可求得的范圍,這類題目就是要求出在給定區(qū)間上的最值.
試題解析:(1),∵是增函數(shù),
恒成立,∴,解得
時,只有時,,∴b的取值范圍為.  3分
(Ⅱ)由題意,是方程的一個根,設(shè)另一根為
  ∴ ∴,             5分
列表分析最值:





1

2

 

0

0

 


遞增
極大值
遞減
極小值
遞增

∴當(dāng)時,的最大值為,               9分
∵對時,恒成立,∴,解得,
的取值范圍為                      12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時,試確定函數(shù)在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)上的最小值;
(3)試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),(其中m為常數(shù)).
(1) 試討論在區(qū)間上的單調(diào)性;
(2) 令函數(shù).當(dāng)時,曲線上總存在相異兩點(diǎn)、,使得過、點(diǎn)處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)的圖象在處的切線斜率為,求實(shí)數(shù)的值;
(2)在(1)的條件下,求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=alnx,a∈R.
(Ⅰ)當(dāng)f(x)存在最小值時,求其最小值φ(a)的解析式;
(Ⅱ)對(Ⅰ)中的φ(a),
(。┊(dāng)a∈(0,+∞)時,證明:φ(a)≤1;
(ⅱ)當(dāng)a>0,b>0時,證明:φ′()≤≤φ′().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)有且僅有兩個不同的零點(diǎn),,則( 。
A.當(dāng)時,,
B.當(dāng)時,
C.當(dāng)時,,
D.當(dāng)時,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)若,試求函數(shù)的單調(diào)區(qū)間;
(2)過坐標(biāo)原點(diǎn)作曲線的切線,證明:切點(diǎn)的橫坐標(biāo)為1;
(3)令,若函數(shù)在區(qū)間(0,1]上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),若f(3)="3f" ′(x0),則x0=(   )
A.±1B.±2C.±D.2

查看答案和解析>>

同步練習(xí)冊答案