【題目】某普通高中為了解本校高三年級學生數(shù)學學習情況,對一?荚嚁(shù)學成績進行分析,從中抽取了名學生的成績作為樣本進行統(tǒng)計(該校全體學生的成績均在),按下列分組,,,,,,作出頻率分布直方圖,如圖;樣本中分數(shù)在內(nèi)的所有數(shù)據(jù)的莖葉圖如圖

根據(jù)往年錄取數(shù)據(jù)劃出預錄分數(shù)線,分數(shù)區(qū)間與可能被錄取院校層次如表.

(1)求的值及頻率分布直方圖中的值;

(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學生中任取人,求此人都不能錄取為專科的概率;

(3)在選取的樣本中,從可能錄取為自招和?苾蓚層次的學生中隨機抽取名學生進行調(diào)研,用表示所抽取的名學生中為自招的人數(shù),求隨機變量的分布列和數(shù)學期望.

【答案】(1);(2);(3)見解析

【解析】

(1)由圖知分數(shù)在的學生有名,由圖知,頻率為,由此能求出的值及頻率分布直方圖中的值;(2)能被?圃盒d浫〉娜藬(shù)為人,抽取的人中,成績能被?圃盒d浫〉念l率是,從而從該校高三年級學生中任取人能被專科院校錄取的概率為,記該校高三年級學生中任取人,都不能被?圃盒d浫〉氖录䴙,由此可求出此人都不能錄取為?频母怕;(3)選取的樣本中能被專科院校錄取的人數(shù)為人,成績能過自招線人數(shù)為人,隨機變量的所有可能取值為,分別求出隨機變量的分布列和數(shù)學期望.

(1)由圖知分數(shù)在的學生有名,

又由圖知,頻率為:,則:

(2)能被?圃盒d浫〉娜藬(shù)為:

抽取的人中,成績能被?圃盒d浫〉念l率是:

從該校高三年級學生中任取人能被?圃盒d浫〉母怕蕿

記該校高三年級學生中任取人,都不能被專科院校錄取的事件為

則此人都不能錄取為?频母怕剩

(3)選取的樣本中能被專科院校錄取的人數(shù)為

成績能過自招線人數(shù)為:人,

又隨機變量的所有可能取值為

;

;

隨機變量的分布列為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線的左右焦點分別為,為坐標原點.為曲線右支上的點,點外角平分線上,且.若恰為頂角為的等腰三角形,則該雙曲線的離心率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,四邊形是菱形,,平面平面,.

1)求證:;

2)若,求三棱錐和三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)把曲線向下平移個單位,然后各點橫坐標變?yōu)樵瓉淼?/span>倍得到曲線(縱坐標不變),設點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于,兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市教育部門為研究高中學生的身體素質(zhì)與課外體育鍛煉時間的關系,對該市某校200名高中學生的課外體育鍛煉平均每天運動的時間進行調(diào)查,數(shù)據(jù)如下表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間(分鐘)

總?cè)藬?shù)

20

36

44

50

40

10

將學生日均課外體育運動時間在上的學生評價為課外體育達標”.

1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為課外體育達標與性別有關?

課外體育不達標

課外體育達標

合計

20

110

合計

2)從上述課外體育不達標的學生中,按性別用分層抽樣的方法抽取10名學生,再從這10名學生中隨機抽取3人了解他們鍛煉時間偏少的原因,記所抽取的3人中男生的人數(shù)為隨機變量為,的分布列和數(shù)學期望.

3)將上述調(diào)查所得到的頻率視為概率來估計全市的情況,現(xiàn)在從該市所有高中學生中,抽取4名學生,求其中恰好有2名學生是課外體育達標的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)求的最大值;

2)若對于任意的,不等式恒成立,求整數(shù)a的最小值.(參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,為正三角形,且,,將沿翻折.

1)若點的射影在上,求的長;

2)若點的射影在中,且直線與平面所成角的正弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形分別是的中點,將沿折起,如圖所示,記二面角的大小為

(1)證明:

(2)若為正三角形,試判斷點在平面內(nèi)的身影是否在直線上,證明你的結(jié)論,并求角的正弦值.

查看答案和解析>>

同步練習冊答案