【題目】函數(shù)y=f(x)定義域是D,若對(duì)任意x1 , x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù),設(shè)函數(shù)y=f(x)在[0,1]上為非減函數(shù),滿足條件:①f(0)=0;②f( )= f(x);③f(1﹣x)=1﹣f(x);則f( )+f( )=

【答案】
【解析】解:由③,令x=0,則f(1)=1﹣f(0)=1,

由②,令x=1,則f( )= f(1)= ,

, ,

,

由③,令x= ,則f( )=

, , ,

,

,

∴f( )=

∴f( )+f( )=

所以答案是:

【考點(diǎn)精析】利用函數(shù)單調(diào)性的判斷方法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)子區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個(gè)“開心點(diǎn)”,也稱f(x)在區(qū)間D上存在開心點(diǎn).若函數(shù)f(x)=ax2﹣2x﹣2a﹣ 在區(qū)間[﹣3,﹣ ]上存在開心點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,0)
B.[﹣ ,0]
C.[﹣ ,0]
D.[﹣ ,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形ABCD的三個(gè)頂點(diǎn)的坐標(biāo)為A(﹣1,4),B(﹣2,﹣1),C(2,3).

(1)求平行四邊形ABCD的頂點(diǎn)D的坐標(biāo)
(2)在△ACD中,求CD邊上的高線所在直線方程;
(3)求△ACD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若實(shí)數(shù)x、y、m滿足|x﹣m|>|y﹣m|,則稱x比y遠(yuǎn)離m.
(1)若x2﹣1比3遠(yuǎn)離0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷中正確的是( )
A. 是偶函數(shù)
B. 是奇函數(shù)
C. 是偶函數(shù)
D. 是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a﹣2)x+a﹣4;
(1)若函數(shù)y=f(x)在區(qū)間[1,2]上的最小值為4﹣a,求實(shí)數(shù)a的取值范圍;
(2)是否存在整數(shù)m,n,使得關(guān)于x的不等式m≤f(x)≤n的解集恰好為[m,n],若存在,求出m,n的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=x,過(guò)點(diǎn)M(2,0)作直線l:x=ny+2與拋物線C交于A,B兩點(diǎn),點(diǎn)N是定直線x=﹣2上的任意一點(diǎn),分別記直線AN,MN,BN的斜率為k1 , k2 , k3
(1)求 的值;
(2)試探求k1 , k2 , k3之間的關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為 ,且過(guò)點(diǎn)D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) ,若P是橢圓上的動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有三個(gè)房間需要粉刷,粉刷方案要求:每個(gè)房間只用一種顏色,且三個(gè)房間顏色各不相同.已知三個(gè)房間的粉刷面積(單位:m2)分別為x,y,z,,且xyz,三種顏色涂料的粉刷費(fèi)用(單位:元/m2)分別為a,b,c,且abc,在不同的方案中,最低的總費(fèi)用(單位:元)是()
A.ax+by+cz
B.az+by+cx
C.ay+bz+cx
D.ay+bx+cz

查看答案和解析>>

同步練習(xí)冊(cè)答案