【題目】已知二次函數(shù),不等式的解集有且只有一個(gè)元素,設(shè)數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
(3)設(shè)各項(xiàng)均不為0的數(shù)列中,滿足的正整數(shù)的個(gè)數(shù)稱為這個(gè)數(shù)列的變號(hào)數(shù),令,求數(shù)列的變號(hào)數(shù).
【答案】(1)(2)(3)
【解析】
(1)先根據(jù)不等式的解集有且只有一個(gè)元素再結(jié)合求出,進(jìn)而代入求出;再根據(jù)前項(xiàng)和與通項(xiàng)之間的關(guān)系即可求出數(shù)列的通項(xiàng)公式; (2)先求出數(shù)列的通項(xiàng),再結(jié)合裂項(xiàng)相消法求出數(shù)列的前項(xiàng)和;
(3)先根據(jù)條件求出數(shù)列的通項(xiàng),再通過(guò)作差求出數(shù)列的單調(diào)性,最后結(jié)合變號(hào)數(shù)的定義即可得到結(jié)論.
解:(1)不等式地的解集有且只有一個(gè)元素,
,又,故,
,
當(dāng)時(shí),,
當(dāng)時(shí),,
不滿足,
.
(2),
當(dāng)時(shí),,
.
又也滿足該式,故.
(3),,,,,
當(dāng)時(shí),
,
故當(dāng)時(shí),,
,,,當(dāng)時(shí),恒成立,
故數(shù)列的變號(hào)數(shù)為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某屆奧運(yùn)會(huì)上,中國(guó)隊(duì)以26金18銀26銅的成績(jī)稱金牌榜第三、獎(jiǎng)牌榜第二,某校體育愛好者在高三年級(jí)一班至六班進(jìn)行了“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”的滿意度調(diào)查結(jié)果只有“滿意”和“不滿意”兩種,從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如表:
班號(hào) | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數(shù) | 5 | 9 | 11 | 9 | 7 | 9 |
滿意人數(shù) | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年級(jí)全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對(duì)象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對(duì)“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”不滿意的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為檢驗(yàn)兩條生產(chǎn)線的優(yōu)品率,現(xiàn)從兩條生產(chǎn)線上各抽取件產(chǎn)品進(jìn)行檢測(cè)評(píng)分,用莖葉圖的形式記錄,并規(guī)定高于分為優(yōu)品.前件的評(píng)分記錄如下,第件暫不公布.
(1)求所抽取的生產(chǎn)線上的個(gè)產(chǎn)品的總分小于生產(chǎn)線上的第個(gè)產(chǎn)品的總分的概率;
(2)已知生產(chǎn)線的第件產(chǎn)品的評(píng)分分別為.
①?gòu)?/span>生產(chǎn)線的件產(chǎn)品里面隨機(jī)抽取件,設(shè)非優(yōu)品的件數(shù)為,求的分布列和數(shù)學(xué)期望;
②以所抽取的樣本優(yōu)品率來(lái)估計(jì)生產(chǎn)線的優(yōu)品率,從生產(chǎn)線上隨機(jī)抽取件產(chǎn)品,記優(yōu)品的件數(shù)為,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的三棱錐中,是邊長(zhǎng)為2的等邊三角形,,是的中位線,為線段的中點(diǎn).
(1)證明:.
(2)若二面角為直二面角,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.
(1)求證: ;
(2)若為中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,分別為線段的中點(diǎn),為四棱錐的外接球的球心,點(diǎn)分別是直線上的動(dòng)點(diǎn),記直線與所成角為,則當(dāng)最小時(shí),( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦·曼得爾布羅在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科,它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖甲所示的分形規(guī)律可得如圖乙所示的一個(gè)樹形圖:記圖乙中第行黑圈的個(gè)數(shù)為,則(1)_______;(2)______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,是等邊三角形,四邊形是等腰梯形,,,平面平面.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com