【題目】在如圖所示的幾何體中,是等邊三角形,四邊形是等腰梯形,,,平面平面.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)通過面面垂直,結(jié)合,即可推證線面垂直;
(2)以為坐標(biāo)原點,建立空間直角坐標(biāo)系;通過求解兩個平面的法向量即可求得二面角的余弦值.
(1)證明:在等腰梯形中,過點C作交AB于點E,
設(shè)BC長為1,則,,,,
可得,即
所以,
因為面與面交線為,
又平面,
所以平面.
(2)過點C作平面,
以點C為原點,,,所在的直線分別為x,y,z軸
建立如圖所示的空間直角坐標(biāo)系.
則,,,,
所以,,
設(shè)平面的法向量為,
則 ,即
取,則,,
得.
取平面的法向量為,,
所以,
由圖形知該二面角的平面角為銳角,
所以二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),不等式的解集有且只有一個元素,設(shè)數(shù)列的前項和.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和.
(3)設(shè)各項均不為0的數(shù)列中,滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令,求數(shù)列的變號數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在處的切線方程是.
(1)求的值;
(2)若函數(shù),討論的單調(diào)性與極值;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點,點是曲線上的動點, 為的中點.
(1)求點的軌跡的直角坐標(biāo)方程;
(2)已知直線與軸的交點為,與曲線的交點為,若的中點為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟的發(fā)展,居民收入逐年增長.某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 6 | 7 | 8 | 10 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?
附:回歸直線的斜率和截距的最小二乘估計公式分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 下列結(jié)論錯誤的是
A. 命題:“若,則”的逆否命題是“若,則”
B. “”是“”的充分不必要條件
C. 命題:“, ”的否定是“, ”
D. 若“”為假命題,則均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長度為的線段的兩個端點分別在軸和軸上運動,動點滿足,設(shè)動點的軌跡為曲線.
(1)求曲線的方程;
(2)過點,且斜率不為零的直線與曲線交于兩點,在軸上是否存在定點,使得直線與的斜率之積為常數(shù)?若存在,求出定點的坐標(biāo)以及此常數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,且橢圓上存在一點,滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓右焦點的直線與橢圓交于不同的兩點,求的內(nèi)切圓的半徑的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com