【題目】如圖,建立平面直角坐標(biāo)系軸在地平面上,軸垂直于地平面,單位長度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).

1)求炮的最大射程;

2)設(shè)在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問它的橫坐標(biāo)不超過多少時(shí),炮彈可以擊中它?請(qǐng)說明理由.

【答案】1)炮的最大射程是10千米.

2)當(dāng)不超過6千米時(shí),炮彈可以擊中目標(biāo).

【解析】

試題(1)求炮的最大射程即求k0)與x軸的橫坐標(biāo),求出后應(yīng)用基本不等式求解.(2)求炮彈擊中目標(biāo)時(shí)的橫坐標(biāo)的最大值,由一元二次方程根的判別式求解

試題解析:(1)令y0,得kx1k2x20,

由實(shí)際意義和題設(shè)條件知x0k0,

x10,當(dāng)且僅當(dāng)k1時(shí)取等號(hào).所以炮的最大射程為10千米.

2)因?yàn)?/span>a0,所以炮彈可擊中目標(biāo)

存在k0,使3.2ka1k2a2成立

關(guān)于k的方程a2k220aka2640有正根

判別式Δ=(-20a24a2a264≥0

a≤6.

所以當(dāng)a不超過6(千米)時(shí),可擊中目標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

(Ⅰ)若求不等式的解集

(Ⅱ)若不等式的解集非空,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代著名的數(shù)學(xué)家劉徽著有《海島算經(jīng)》.內(nèi)有一篇:“今有望海島,立兩表齊、高三丈,前后相去千步,今后表與前表相直,從前表卻行百二十三步,人目著地望島峰,與表末參合.從后表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高及去表各幾何?”(參考譯文:假設(shè)測(cè)量海島,立兩根標(biāo)桿,高均為5步,前后相距1000步,令前后兩根標(biāo)桿的底部和島的底部在同一水平直線上,從前標(biāo)桿退行123步,人的視線從地面(人的高度忽略不計(jì))過標(biāo)桿頂恰好觀測(cè)到島峰,從后標(biāo)桿退行127步,人的視線從地面過標(biāo)桿頂恰好觀測(cè)到島峰,問島高多少?島與前標(biāo)桿相距多遠(yuǎn)?)(丈、步為古時(shí)計(jì)量單位,三丈=5步).則海島高度為

A. 1055步 B. 1255步 C. 1550步 D. 2255步

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市工業(yè)部門計(jì)劃對(duì)所轄中小型企業(yè)推行節(jié)能降耗技術(shù)改造,下面是對(duì)所轄企業(yè)是否支持技術(shù)改造進(jìn)行的問卷調(diào)查的結(jié)果:

支持

不支持

合計(jì)

中型企業(yè)

40

小型企業(yè)

240

合計(jì)

560

已知從這560家企業(yè)中隨機(jī)抽取1家,抽到支持技術(shù)改造的企業(yè)的概率為.

(1)能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)!庇嘘P(guān)?

(2)從上述支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出12家企業(yè),然后從這12家企業(yè)選出9家進(jìn)行獎(jiǎng)勵(lì),分別獎(jiǎng)勵(lì)中型企業(yè)50萬元,小型企業(yè)10萬元.設(shè)為所發(fā)獎(jiǎng)勵(lì)的金額.

的分布列和期望.

附:

0.05

0.025

0.01

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),其中.

1)在區(qū)間上,是否存在最小值?若存在,求出最小值;若不存在,請(qǐng)說明理由.

2)若函數(shù)的兩個(gè)極值點(diǎn)為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某種設(shè)備的使用年限(年)與所支出的維修費(fèi)用 (萬元)有如下統(tǒng)計(jì):

2

3

4

5

6

2.2

3.8

5.5

6.5

7.0

已知. ,

(1)求, ;

(2)具有線性相關(guān)關(guān)系,求出線性回歸方程;

(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為F,已知直線與拋物線C交于A,B兩點(diǎn)(A,B兩點(diǎn)分別在軸的上、下方).

(1)求證:

(2)已知弦長,試求:過A,B兩點(diǎn),且與直線相切的圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,錯(cuò)誤的是( )

A.將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,方差不變

B.對(duì)于回歸方程,變量每增加一個(gè)單位,平均增加5個(gè)單位

C.線性回歸方程所對(duì)應(yīng)的直線必過點(diǎn)

D.在一個(gè)列聯(lián)表中,由計(jì)算得,則有的把握說兩個(gè)變量有關(guān)

本題可以參考獨(dú)立性檢驗(yàn)臨界值表

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,已知點(diǎn)為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.過弦的中點(diǎn)作拋物線準(zhǔn)線的垂線,垂足為,則的最大值為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案