精英家教網 > 高中數學 > 題目詳情

【題目】已知兩點A(1,2),B(3,1)到直線l距離分別是 ,則滿足條件的直線l共有( )條.
A.1
B.2
C.3
D.4

【答案】C
【解析】解:A(1,2)到直線l的距離是 ,直線是以A為圓心, 為半徑的圓的切線,
同理B(3,1)到直線l的距離 ,直線是以B為圓心, 為半徑的圓的切線,
∴滿足條件的直線l為以A為圓心, 為半徑的圓和以B為圓心, 為半徑的圓的公切線,
∵|AB|= = ,
兩個半徑分別為 ,
∴兩圓外切,∴兩圓公切線有3條
故滿足條件的直線l有3條.
故選:C.
【考點精析】根據題目的已知條件,利用點到直線的距離公式的相關知識可以得到問題的答案,需要掌握點到直線的距離為:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2015年12月,京津冀等地數城市指數“爆表”,北方此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數據如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點圖知具有線性相關關系,求關于的線性回歸方程;

的濃度;

(ii)規(guī)定:當一天內的濃度平均值在內,空氣質量等級為優(yōu);當一天內的濃度平均值在內,空氣質量等級為良,為使該市某日空氣質量為優(yōu)或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數)

參考公式:回歸直線的方程是,其中 .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處取得極值,其中為常數.若對任意,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=-x3x2(m21)x(xR),其中m>0.

(1)m1求曲線yf(x)在點(1,f(1))處的切線斜率;

(2)求函數的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點滿足條件.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)直線與圓 相切,與曲線相較于, 兩點,若,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)(xk)ex

(1)f(x)的單調區(qū)間;

(2)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球2個.從袋子中不放回地隨機抽取小球兩個,每次抽取一個球,記第一次取出的小球標號為,第二次取出的小球標號為.

(1)記事件表示“”,求事件的概率;

(2)在區(qū)間內任取兩個實數,求“事件恒成立”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】醫(yī)學上某種還沒有完全攻克的疾病,治療時需要通過藥物控制其中的兩項指標.現有三種不同配方的藥劑,根據分析,三種藥劑能控制指標的概率分別為0.5,0.6,0.75,能控制指標的概率分別是0.6,0.5,0.4,能否控制指標與能否控制指標之間相互沒有影響.

(Ⅰ)求三種藥劑中恰有一種能控制指標的概率;

(Ⅱ)某種藥劑能使兩項指標都得到控制就說該藥劑有治療效果.求三種藥劑中有治療效果的藥劑種數的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 是正方形, 平面 , , 分別是 , 的中點.

1)求證:平面平面

2)在線段上確定一點,使平面,并給出證明.

查看答案和解析>>

同步練習冊答案