【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,且c(sinC-sinA)=(sinA+sinB) (b - a).
(1)求B;
(2)若c=8,點M,N是線段BC的兩個三等分點,,求AM的值.
科目:高中數學 來源: 題型:
【題目】關于圓周率π,數學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗,受其啟發(fā),我們也可以通過設計下面的實驗來估計π的值,先請240名同學,每人隨機寫下兩個都小于1的正實數x,y組成的實數對(x,y);若將(x,y)看作一個點,再統(tǒng)計點(x,y)在圓x2+y2=1外的個數m;最后再根據統(tǒng)計數m來估計π的值,假如統(tǒng)計結果是m=52,那么可以估計π的近似值為_______.(用分數表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為,直線與拋物線交于兩點.
(1)若過點,拋物線在點處的切線與在點處的切線交于點.證明:點在定直線上.
(2)若,點在曲線上,的中點均在拋物線上,求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了解高三男生的體能達標情況,抽調了120名男生進行立定跳遠測試,根據統(tǒng)計數據得到如下的頻率分布直方圖.若立定跳遠成績落在區(qū)間的左側,則認為該學生屬“體能不達標的學生,其中分別為樣本平均數和樣本標準差,計算可得(同一組中的數據用該組區(qū)間的中點值作代表).
(1)若該校高三某男生的跳遠距離為,試判斷該男生是否屬于“體能不達標”的學生?
(2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再從中選出兩人進行某體能訓練,求選出的兩人中恰有一人跳遠距離在的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在中,,,為的中點,將沿折起,得到如圖2所示的三棱錐,二面角為直二面角.
(1)求證:平面平面;
(2)設分別為的中點,求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐中,底面是邊長為的菱形,,是等邊三角形,為的中點,.
(1)求證:;
(2)若在線段上,且,能否在棱上找到一點,使平面平面?若存在,求四面體的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市教學研究室為了對今后所出試題的難度有更好的把握,提高命題質量,對該市高三理科數學試卷的得分情況進行了調研.從全市參加考試的理科考生中隨機抽取了100名考生的數學成績(滿分150分),將數據分成9組:,,,,,,,,,并整理得到如圖所示的頻率分布直方圖.用統(tǒng)計的方法得到樣本標準差,以頻率值作為概率估計值.
(Ⅰ)根據頻率分布直方圖,求抽取的100名理科考生數學成績的平均分及眾數;
(Ⅱ)用頻率估計概率,從該市所有高三理科考生的數學成績中隨機抽取3個,記理科數學成績位于區(qū)間內的個數為,求的分布列及數學期望;
(Ⅲ)從該市高三理科數學考試成績中任意抽取一份,記其成績?yōu)?/span>,依據以下不等式評判(表示對應事件的概率):
①,②,
③,其中.
評判規(guī)則:若至少滿足以上兩個不等式,則給予這套試卷好評,否則差評.試問:這套試卷得到好評還是差評?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知四邊形ABCD是邊長為2的正方形,平面ABCD,E是棱PB的中點,且過AE和AD的平面與棱PC交于點F.
(1)求證:;
(2)若平面平面PBC,求線段PA的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com