【題目】已知f(x)=x2+ax+b,g(x)=x2+cx+d,且f(2x+1)=4g(x),f′(x)=g′(x),f(5)=30,求a,b,c,d的值.

【答案】解:∵f(x)=x2+ax+b,g(x)=x2+cx+d, ∴由f(2x+1)=4g(x)得(4+2a﹣4c)x+1+a+b﹣4d=0,
即a﹣2c+2=0,a+b﹣4d+1=0;
又∵f′(x)=g′(x),得a=c,
又由f(5)=30,得5a+b=5,
四個(gè)方程聯(lián)立求得:a=c=2,b=﹣5,
【解析】由條件f(2x+1)=4g(x),f′x=g′(x),f(5)=30,建立方程組進(jìn)行求解即可出a,b,c,d的值.
【考點(diǎn)精析】利用基本求導(dǎo)法則對(duì)題目進(jìn)行判斷即可得到答案,需要熟知若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,tanA是以﹣4為第三項(xiàng),4為第七項(xiàng)的等差數(shù)列的公差,tanB是以 為第三項(xiàng),9為第六項(xiàng)的等比數(shù)列公比,則這個(gè)三角形是( )
A.鈍角三角形
B.銳角三角形
C.等腰直角三角形
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面4米,水面寬8米.水位上升1米后,水面寬為(
A.
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)若,求曲線處的切線方程;

(2)若當(dāng)時(shí), ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(1,0),直線l:x=﹣1,點(diǎn)P在直線l上移動(dòng),R是線段PF與y軸的交點(diǎn),RQ⊥FP,PQ⊥l.
(1)求動(dòng)點(diǎn)Q的軌跡的方程;
(2)記Q的軌跡的方程為E,過(guò)點(diǎn)F作兩條互相垂直的曲線E的弦AB、CD,設(shè)AB、CD的中點(diǎn)分別為M,N.求證:直線MN必過(guò)定點(diǎn)R(3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)φ(x)=,a為正常數(shù)

()f(x)=ln xφ(x),a=4,討論函數(shù)f(x)的單調(diào)性;

()g(x)=|ln x|+φ(x),且對(duì)任意x1x2(0,2],x1x2都有

()求實(shí)數(shù)a的取值范圍;

()求證:當(dāng)x(0,2]時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x|x2-12|的定義域?yàn)閇0,m],值域?yàn)閇0,am2],則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,圓錐曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過(guò)定點(diǎn)P(2,3),傾斜角為
(1)寫(xiě)出直線l的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與圓相交于A,B兩點(diǎn),求|PA|·|PB|的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 的離心率為, 、為橢圓的左右頂點(diǎn),焦點(diǎn)到短軸端點(diǎn)的距離為2, 、為橢圓上異于、的兩點(diǎn),且直線的斜率等于直線斜率的2倍.

(Ⅰ)求證:直線與直線的斜率乘積為定值;

(Ⅱ)求三角形的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案