已知函數(shù)f(x)=ax+xln|x+b|是奇函數(shù),且圖象在點(diǎn)(e,f(g))處的切線斜率為3(為自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)a、b的值;
(2)若k∈Z,且k<對(duì)任意x>l恒成立,求k的最大值;
(3)當(dāng)m>n>l(m,n∈Z)時(shí),證明:(nmmn>(mnnm
(注:本題第(2)(3)兩問只需要解答一問,兩問都答只計(jì)第(2)問得分)
【答案】分析:(1)利用f(x)是奇函數(shù),可得f(-x)=-f(x),從而可求b的值,利用圖象在點(diǎn)(e,f(e))處的切線斜率為3,可求a的值;
(2)當(dāng)x>l時(shí),設(shè),求導(dǎo)函數(shù),確定g(x)的最小值,即可求得k的最大值;
(3)要證:(nmmn>(mnnm,即要證nlnn+mnlnm>mlnm+mnlnn,即,構(gòu)造函數(shù)φ(x)=,x>1,證明φ(x)在(1,+∞)上為增函數(shù)即可.
解答:(1)解:f(x)是奇函數(shù),所以f(-x)=-f(x),即a(-x)+(-x)ln|-x+b|=-(ax+xln|x+b|)…(2分),
所以ln|-x+b|=ln|x+b|,從而b=0…(3分),
此時(shí)f(x)=ax+xln|x|,f'(x)=a+l+ln|x|…(4分),
依題意f'(e)=a+2=3,所以a=1…(5分)
(2)解:當(dāng)x>l時(shí),設(shè),則…(6分)
設(shè)h(x)=x-2-lnx,則,∴h(x)在(1,+∞)上是增函數(shù)…(8分)
因?yàn)閔(3)=l-ln3<0,h(4)=2-ln4>0,所以?x∈(3,4),使h(x)=0…(10分),
x∈(1,x)時(shí),h(x)<O,g'(x)<0,即g(x)在(1,x)上為減函數(shù);
同理g(x)在(x,+∞)上為增函數(shù)…(12分),
從而g(x)的最小值為…(13分)
所以k<x∈(3,4),k的最大值為3…(14分).
(3)證明:要證:(nmmn>(mnnm,即要證nlnn+mnlnm>mlnm+mnlnn…(6分),
即n(1-m)lnn>m(l-n)lnm,…(8分),
設(shè)φ(x)=,x>1…(9分),則φ′(x)=…(10分)
設(shè)g(x)=x-l-lnx,則…(11分),g(x)在(1,+∞)上為增函數(shù)…(12分),
∴x>1時(shí),g(x)>g(l)=l-l-lnl=0,從而φ′(x)>O,φ(x)在(1,+∞)上為增函數(shù)…(13分),
因?yàn)閙>n>l,所以φ(n)<φ(m),,所以(nmmn>(mnnm…(14分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查恒成立問題,考查不等式的證明,正確求導(dǎo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案